Evaluating how interactive visualizations can assist in finding samples where and how computer vision models make mistakes

Creating Computer Vision (CV) models remains a complex practice, despite their ubiquity. Access to data, the requirement for ML expertise, and model opacity are just a few points of complexity that limit the ability of end-users to build, inspect, and improve these models. Interactive ML perspective...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-03
Hauptverfasser: Song, Hayeong, Ramos, Gonzalo, Bodik, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Creating Computer Vision (CV) models remains a complex practice, despite their ubiquity. Access to data, the requirement for ML expertise, and model opacity are just a few points of complexity that limit the ability of end-users to build, inspect, and improve these models. Interactive ML perspectives have helped address some of these issues by considering a teacher in the loop where planning, teaching, and evaluating tasks take place. We present and evaluate two interactive visualizations in the context of Sprite, a system for creating CV classification and detection models for images originating from videos. We study how these visualizations help Sprite's users identify (evaluate) and select (plan) images where a model is struggling and can lead to improved performance, compared to a baseline condition where users used a query language. We found that users who had used the visualizations found more images across a wider set of potential types of model errors.
ISSN:2331-8422