Bounds for lacunary bilinear spherical and triangle maximal functions

We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2024-08
Hauptverfasser: Borges, Tainara, Foster, Benjamin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title arXiv.org
container_volume
creator Borges, Tainara
Foster, Benjamin
description We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in \(d\geq 2\), we prove boundedness for any \(p,q\in (1,\infty]^2\), which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in \(d\geq 7\), and the description of the sharp region will depend on a sharp description of the H\"older bounds for the single scale triangle averaging operator, which is still open.
format Article
fullrecord <record><control><sourceid>proquest</sourceid><recordid>TN_cdi_proquest_journals_2817866453</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2817866453</sourcerecordid><originalsourceid>FETCH-proquest_journals_28178664533</originalsourceid><addsrcrecordid>eNqNiksKwjAUAIMgWLR3eOC60Cb9rZWKB3Bfnm2qKelLzWtAb28XHsDVwMxsRCSVypI6l3InYuYxTVNZVrIoVCSakwvUMwzOg8UuEPoP3I01pNEDz0_tTYcWkHpYvEF6WA0Tvs20yiFQtxhHfBDbAS3r-Me9OF6a2_mazN69gualHV3wtKZW1llVl2VeKPXf9QW-ODuL</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2817866453</pqid></control><display><type>article</type><title>Bounds for lacunary bilinear spherical and triangle maximal functions</title><source>Free E- Journals</source><creator>Borges, Tainara ; Foster, Benjamin</creator><creatorcontrib>Borges, Tainara ; Foster, Benjamin</creatorcontrib><description>We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in \(d\geq 2\), we prove boundedness for any \(p,q\in (1,\infty]^2\), which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in \(d\geq 7\), and the description of the sharp region will depend on a sharp description of the H\"older bounds for the single scale triangle averaging operator, which is still open.</description><identifier>EISSN: 2331-8422</identifier><language>eng</language><publisher>Ithaca: Cornell University Library, arXiv.org</publisher><subject>Operators (mathematics)</subject><ispartof>arXiv.org, 2024-08</ispartof><rights>2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>780,784</link.rule.ids></links><search><creatorcontrib>Borges, Tainara</creatorcontrib><creatorcontrib>Foster, Benjamin</creatorcontrib><title>Bounds for lacunary bilinear spherical and triangle maximal functions</title><title>arXiv.org</title><description>We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in \(d\geq 2\), we prove boundedness for any \(p,q\in (1,\infty]^2\), which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in \(d\geq 7\), and the description of the sharp region will depend on a sharp description of the H\"older bounds for the single scale triangle averaging operator, which is still open.</description><subject>Operators (mathematics)</subject><issn>2331-8422</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><recordid>eNqNiksKwjAUAIMgWLR3eOC60Cb9rZWKB3Bfnm2qKelLzWtAb28XHsDVwMxsRCSVypI6l3InYuYxTVNZVrIoVCSakwvUMwzOg8UuEPoP3I01pNEDz0_tTYcWkHpYvEF6WA0Tvs20yiFQtxhHfBDbAS3r-Me9OF6a2_mazN69gualHV3wtKZW1llVl2VeKPXf9QW-ODuL</recordid><startdate>20240811</startdate><enddate>20240811</enddate><creator>Borges, Tainara</creator><creator>Foster, Benjamin</creator><general>Cornell University Library, arXiv.org</general><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope></search><sort><creationdate>20240811</creationdate><title>Bounds for lacunary bilinear spherical and triangle maximal functions</title><author>Borges, Tainara ; Foster, Benjamin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-proquest_journals_28178664533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Operators (mathematics)</topic><toplevel>online_resources</toplevel><creatorcontrib>Borges, Tainara</creatorcontrib><creatorcontrib>Foster, Benjamin</creatorcontrib><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borges, Tainara</au><au>Foster, Benjamin</au><format>book</format><genre>document</genre><ristype>GEN</ristype><atitle>Bounds for lacunary bilinear spherical and triangle maximal functions</atitle><jtitle>arXiv.org</jtitle><date>2024-08-11</date><risdate>2024</risdate><eissn>2331-8422</eissn><abstract>We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in \(d\geq 2\), we prove boundedness for any \(p,q\in (1,\infty]^2\), which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in \(d\geq 7\), and the description of the sharp region will depend on a sharp description of the H\"older bounds for the single scale triangle averaging operator, which is still open.</abstract><cop>Ithaca</cop><pub>Cornell University Library, arXiv.org</pub><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier EISSN: 2331-8422
ispartof arXiv.org, 2024-08
issn 2331-8422
language eng
recordid cdi_proquest_journals_2817866453
source Free E- Journals
subjects Operators (mathematics)
title Bounds for lacunary bilinear spherical and triangle maximal functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A21%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=document&rft.atitle=Bounds%20for%20lacunary%20bilinear%20spherical%20and%20triangle%20maximal%20functions&rft.jtitle=arXiv.org&rft.au=Borges,%20Tainara&rft.date=2024-08-11&rft.eissn=2331-8422&rft_id=info:doi/&rft_dat=%3Cproquest%3E2817866453%3C/proquest%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2817866453&rft_id=info:pmid/&rfr_iscdi=true