Bounds for lacunary bilinear spherical and triangle maximal functions
We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associate...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2024-08 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove \(L^p\times L^q\rightarrow L^r\) bounds for certain lacunary bilinear maximal averaging operators with parameters satisfying the H\"older relation \(1/p+1/q=1/r\). The boundedness region that we get contains at least the interior of the H\"older boundedness region of the associated single scale bilinear averaging operator. In the case of the lacunary bilinear spherical maximal function in \(d\geq 2\), we prove boundedness for any \(p,q\in (1,\infty]^2\), which is sharp up to boundary; we then show how to extend this result to a more degenerate family of surfaces where some curvatures are allowed to vanish. For the lacunary triangle averaging maximal operator, we have results in \(d\geq 7\), and the description of the sharp region will depend on a sharp description of the H\"older bounds for the single scale triangle averaging operator, which is still open. |
---|---|
ISSN: | 2331-8422 |