Inequalities for eigenvalues of operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space
In this paper, we compute universal inequalities of eigenvalues of a large class of second-order elliptic differential operators in divergence form, that includes, e.g., the Laplace and Cheng-Yau operators, on a bounded domain in a complete Riemannian manifolds isometrically immersed in Euclidean sp...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper, we compute universal inequalities of eigenvalues of a large class of second-order elliptic differential operators in divergence form, that includes, e.g., the Laplace and Cheng-Yau operators, on a bounded domain in a complete Riemannian manifolds isometrically immersed in Euclidean space. A key step in order to obtain the sequence of our estimates is to get the right Yang-type first inequality. We also prove some inequalities for manifolds supporting some special functions and tensors. |
---|---|
ISSN: | 2331-8422 |