Inequalities for eigenvalues of operators in divergence form on Riemannian manifolds isometrically immersed in Euclidean space

In this paper, we compute universal inequalities of eigenvalues of a large class of second-order elliptic differential operators in divergence form, that includes, e.g., the Laplace and Cheng-Yau operators, on a bounded domain in a complete Riemannian manifolds isometrically immersed in Euclidean sp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: Silva, Cristiano S, Miranda, Juliana F R, Araújo Filho, Marcio C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, we compute universal inequalities of eigenvalues of a large class of second-order elliptic differential operators in divergence form, that includes, e.g., the Laplace and Cheng-Yau operators, on a bounded domain in a complete Riemannian manifolds isometrically immersed in Euclidean space. A key step in order to obtain the sequence of our estimates is to get the right Yang-type first inequality. We also prove some inequalities for manifolds supporting some special functions and tensors.
ISSN:2331-8422