Aberration free synthetic aperture second harmonic generation holography
Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition,...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Second harmonic generation (SHG) microscopy is a valuable tool for optical microscopy. SHG microscopy is normally performed as a point scanning imaging method, which lacks phase information and is limited in spatial resolution by the spatial frequency support of the illumination optics. In addition, aberrations in the illumination are difficult to remove. We propose and demonstrate SHG holographic synthetic aperture holographic imaging in both the forward (transmission) and backward (epi) imaging geometries. By taking a set of holograms with varying incident angle plane wave illumination, the spatial frequency support is increased and the input and output pupil phase aberrations are estimated and corrected -- producing diffraction limited SHG imaging that combines the spatial frequency support of the input and output optics. The phase correction algorithm is computationally efficient and robust and can be applied to any set of measured field imaging data. |
---|---|
ISSN: | 2331-8422 |