Macroscopic Multi-fractality of Gaussian Random Fields and Linear Stochastic Partial Differential Equations with Colored Noise

We consider the linear stochastic heat and wave equations with generalized Gaussian noise that is white in time and spatially correlated. Under the assumption that the homogeneous spatial correlation f satisfies some mild conditions, we show that the solutions to the linear stochastic partial differ...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of theoretical probability 2023-06, Vol.36 (2), p.926-947
1. Verfasser: Yi, Jaeyun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the linear stochastic heat and wave equations with generalized Gaussian noise that is white in time and spatially correlated. Under the assumption that the homogeneous spatial correlation f satisfies some mild conditions, we show that the solutions to the linear stochastic partial differential equations (SPDEs) exhibit tall peaks in macroscopic scales, which means they are macroscopically multi-fractal. We compute the macroscopic Hausdorff dimension of the peaks for Gaussian random fields with vanishing correlation and then apply this result to the solution of the linear SPDEs. We also study the spatio-temporal multi-fractality of the linear SPDEs.
ISSN:0894-9840
1572-9230
DOI:10.1007/s10959-022-01198-6