Lower Deviation Probabilities for Level Sets of the Branching Random Walk
Given a supercritical branching random walk { Z n } n ≥ 0 on R , let Z n ( A ) be the number of particles located in a set A ⊂ R at generation n . It is known from Biggins (J Appl Probab 14:630–636, 1977) that under some mild conditions, for θ ∈ [ 0 , 1 ) , n - 1 log Z n ( [ θ x ∗ n , ∞ ) ) converge...
Gespeichert in:
Veröffentlicht in: | Journal of theoretical probability 2023-06, Vol.36 (2), p.811-844 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Given a supercritical branching random walk
{
Z
n
}
n
≥
0
on
R
, let
Z
n
(
A
)
be the number of particles located in a set
A
⊂
R
at generation
n
. It is known from Biggins (J Appl Probab 14:630–636, 1977) that under some mild conditions, for
θ
∈
[
0
,
1
)
,
n
-
1
log
Z
n
(
[
θ
x
∗
n
,
∞
)
)
converges almost surely to
log
E
[
Z
1
(
R
)
]
-
I
(
θ
x
∗
)
as
n
→
∞
, where
x
∗
is the speed of the maximal position of
{
Z
n
}
n
≥
0
and
I
(
·
)
is the large deviation rate function of the underlying random walk. In this work, we investigate its lower deviation probabilities, in other words, the convergence rates of
P
Z
n
(
[
θ
x
∗
n
,
∞
)
)
<
e
an
as
n
→
∞
, where
a
∈
[
0
,
log
E
[
Z
1
(
R
)
]
-
I
(
θ
x
∗
)
)
. Our results complete those in Chen and He (Ann Institut Henri Poincare Probab Stat 56:2507–2539, 2020), Gantert and Höfelsauer (Electron Commun Probab 23(34):1–12, 2018) and Öz (Latin Am J Probab Math Stat 17:711–731, 2020). |
---|---|
ISSN: | 0894-9840 1572-9230 |
DOI: | 10.1007/s10959-022-01183-z |