Performance optimization of polyetherimide‐zeolite 4A mixed matrix membranes for carbon dioxide/methane separation process using response surface methodology

The performance optimization studies of zeolite 4A embedded polyetherimide mixed matrix membranes to separate carbon dioxide/methane by simultaneously considering the effect of process parameters on process responses were the focus of this study. Mixed matrix membranes were characterized and analyze...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Materialwissenschaft und Werkstofftechnik 2023-05, Vol.54 (5), p.571-585
Hauptverfasser: Masor, A. E., Nasir, R., Mannan, H. A., Qadir, D., Sharif, R., Mohshim, D. F., Mukhtar, H., Muhammad, A.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The performance optimization studies of zeolite 4A embedded polyetherimide mixed matrix membranes to separate carbon dioxide/methane by simultaneously considering the effect of process parameters on process responses were the focus of this study. Mixed matrix membranes were characterized and analyzed. The thermophysical characteristics of the synthesized membranes were assessed by different analytical equipment. The permeability of pure gases was determined at varying feed pressures (4 bar to 10 bar) to evaluate gas separation performance. Process optimization studies were accomplished by response surface methodology to find the relation of pressure and zeolite loading on carbon dioxide and methane permeability, and carbon dioxide/methane selectivity. The characterization results revealed that all membranes were dense in structure and has improved thermal stability. The spectrometry results confirmed the molecular interaction between polyetherimide and zeolite 4A filler. Gas permeability results showed a more than 90 % increase in carbon dioxide permeability compared to the nascent polyetherimide membrane. Similarly, selectivity of mixed matrix membranes was 45 % higher than polyetherimide membrane. The optimal operating conditions were found to be 20 wt. % zeolite loading and 6 bar pressure with overall desirability of 0.700. These membranes can find potential in various gas separation applications.
ISSN:0933-5137
1521-4052
DOI:10.1002/mawe.202200220