Hypergraph regularity and random sampling

Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Random structures & algorithms 2023-07, Vol.62 (4), p.956-1015
Hauptverfasser: Joos, Felix, Kim, Jaehoon, Kühn, Daniela, Osthus, Deryk
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Suppose that a k‐uniform hypergraph H satisfies a certain regularity instance (that is, there is a partition of H given by the hypergraph regularity lemma into a bounded number of quasirandom subhypergraphs of prescribed densities). We prove that with high probability a large enough uniform random sample of the vertex set of H also admits the same regularity instance. Here the crucial feature is that the error term measuring the quasirandomness of the subhypergraphs requires only an arbitrarily small additive correction. This has applications to combinatorial property testing. The graph case of the sampling result was proved by Alon, Fischer, Newman and Shapira.
ISSN:1042-9832
1098-2418
DOI:10.1002/rsa.21126