Soil Moisture Retrieval Over Crop Fields from Multi-polarization SAR Data
Soil moisture estimation from agriculture fields using SAR measurements is a challenging process owing to the presence of vegetation canopy. In this study, the soil moisture (SM) is retrieved from multi-polarization airborne L- and C-band E-SAR data of different agriculture fields by using the radar...
Gespeichert in:
Veröffentlicht in: | Journal of the Indian Society of Remote Sensing 2023-05, Vol.51 (5), p.949-962 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Soil moisture estimation from agriculture fields using SAR measurements is a challenging process owing to the presence of vegetation canopy. In this study, the soil moisture (SM) is retrieved from multi-polarization airborne L- and C-band E-SAR data of different agriculture fields by using the radar parameter, Radar Vegetation Index (RVI). The retrieval methodology employs the semi-empirical Water Cloud Model (WCM) for vegetation-soil system modeling, followed by an inversion algorithm based on a Look Up Table approach. The impact of using different vegetation descriptors, both from in situ measured (Leaf Area Index, Wet Biomass and Vegetation Water Content) and radar derived (L-band RVI and C-band RVI), on the WCM inversion for SM retrieval is examined. The use of the RVI as the vegetation descriptor, which is obtained from C-band data, improves soil moisture retrieval with an RMSE of 7–8% volumetric soil moisture at L-band. |
---|---|
ISSN: | 0255-660X 0974-3006 |
DOI: | 10.1007/s12524-023-01682-4 |