Soil Moisture Retrieval Over Crop Fields from Multi-polarization SAR Data

Soil moisture estimation from agriculture fields using SAR measurements is a challenging process owing to the presence of vegetation canopy. In this study, the soil moisture (SM) is retrieved from multi-polarization airborne L- and C-band E-SAR data of different agriculture fields by using the radar...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of the Indian Society of Remote Sensing 2023-05, Vol.51 (5), p.949-962
Hauptverfasser: Shilpa, K., Suresh Raju, C., Mandal, Dipankar, Rao, Y. S., Shetty, Amba
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Soil moisture estimation from agriculture fields using SAR measurements is a challenging process owing to the presence of vegetation canopy. In this study, the soil moisture (SM) is retrieved from multi-polarization airborne L- and C-band E-SAR data of different agriculture fields by using the radar parameter, Radar Vegetation Index (RVI). The retrieval methodology employs the semi-empirical Water Cloud Model (WCM) for vegetation-soil system modeling, followed by an inversion algorithm based on a Look Up Table approach. The impact of using different vegetation descriptors, both from in situ measured (Leaf Area Index, Wet Biomass and Vegetation Water Content) and radar derived (L-band RVI and C-band RVI), on the WCM inversion for SM retrieval is examined. The use of the RVI as the vegetation descriptor, which is obtained from C-band data, improves soil moisture retrieval with an RMSE of 7–8% volumetric soil moisture at L-band.
ISSN:0255-660X
0974-3006
DOI:10.1007/s12524-023-01682-4