Admissibility of retarded diagonal systems with one-dimensional input space

We investigate infinite-time admissibility of a control operator B in a Hilbert space state-delayed dynamical system setting of the form z ˙ ( t ) = A z ( t ) + A 1 z ( t - τ ) + B u ( t ) , where A generates a diagonal C 0 -semigroup, A 1 ∈ L ( X ) is also diagonal and u ∈ L 2 ( 0 , ∞ ; C ) . Our a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics of control, signals, and systems signals, and systems, 2023-06, Vol.35 (2), p.433-465
Hauptverfasser: Kapica, Rafał, Partington, Jonathan R., Zawiski, Radosław
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We investigate infinite-time admissibility of a control operator B in a Hilbert space state-delayed dynamical system setting of the form z ˙ ( t ) = A z ( t ) + A 1 z ( t - τ ) + B u ( t ) , where A generates a diagonal C 0 -semigroup, A 1 ∈ L ( X ) is also diagonal and u ∈ L 2 ( 0 , ∞ ; C ) . Our approach is based on the Laplace embedding between L 2 and the Hardy space H 2 ( C + ) . The results are expressed in terms of the eigenvalues of A and A 1 and the sequence representing the control operator.
ISSN:0932-4194
1435-568X
DOI:10.1007/s00498-023-00345-6