Admissibility of retarded diagonal systems with one-dimensional input space
We investigate infinite-time admissibility of a control operator B in a Hilbert space state-delayed dynamical system setting of the form z ˙ ( t ) = A z ( t ) + A 1 z ( t - τ ) + B u ( t ) , where A generates a diagonal C 0 -semigroup, A 1 ∈ L ( X ) is also diagonal and u ∈ L 2 ( 0 , ∞ ; C ) . Our a...
Gespeichert in:
Veröffentlicht in: | Mathematics of control, signals, and systems signals, and systems, 2023-06, Vol.35 (2), p.433-465 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We investigate infinite-time admissibility of a control operator
B
in a Hilbert space state-delayed dynamical system setting of the form
z
˙
(
t
)
=
A
z
(
t
)
+
A
1
z
(
t
-
τ
)
+
B
u
(
t
)
, where
A
generates a diagonal
C
0
-semigroup,
A
1
∈
L
(
X
)
is also diagonal and
u
∈
L
2
(
0
,
∞
;
C
)
. Our approach is based on the Laplace embedding between
L
2
and the Hardy space
H
2
(
C
+
)
. The results are expressed in terms of the eigenvalues of
A
and
A
1
and the sequence representing the control operator. |
---|---|
ISSN: | 0932-4194 1435-568X |
DOI: | 10.1007/s00498-023-00345-6 |