Forecasting multi-step-ahead reservoir monthly and daily inflow using machine learning models based on different scenarios

Dam reservoir operations are a critical issue for decision-makers in maximizing the use of water resources. Artificial Intelligence and Machine Learning models (AI & ML) approaches are increasingly popular for reservoir inflow predictions. In this study, the multilayer perceptron neural network...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied intelligence (Dordrecht, Netherlands) Netherlands), 2023-05, Vol.53 (9), p.10893-10916
Hauptverfasser: Ibrahim, Karim Sherif Mostafa Hassan, Huang, Yuk Feng, Ahmed, Ali Najah, Koo, Chai Hoon, El-Shafie, Ahmed
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Dam reservoir operations are a critical issue for decision-makers in maximizing the use of water resources. Artificial Intelligence and Machine Learning models (AI & ML) approaches are increasingly popular for reservoir inflow predictions. In this study, the multilayer perceptron neural network (MLP), Support Vector Regression (SVR), Adaptive Neuro-Fuzzy Inference System (ANFIS), and the Extreme Gradient Boosting (XG-Boost), were adopted to forecast reservoir inflows for the monthly and daily timeframes. Results showed that: (1) For the monthly timeframe, all the four models were proficient in obtaining efficient monthly reservoir inflows by scoring at least an R² of 0.5; with the XG-Boost ranked as the best model, followed by the MLPNN, SVR, and lastly ANFIS. (2) the XG-Boost still outperforms all other models for forecasting daily inflow; but however, with reduced performance. The models were still ranked in the same order, with the ANFIS showing very poor performance in scenario-2, scenario-3, and scenario-4. (3) For daily inflows, the best scenarios are scenario-5, scenario-6, scenario-7 as the models were trained based on the 1,3,5, days-lag forecasted inflow, and overall, the XG-Boost outperforms all the other models.
ISSN:0924-669X
1573-7497
DOI:10.1007/s10489-022-04029-7