The inverse problem of positive autoconvolution

We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-06, Vol.69 (6), p.1-1
Hauptverfasser: Finesso, Lorenzo, Spreij, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1
container_issue 6
container_start_page 1
container_title IEEE transactions on information theory
container_volume 69
creator Finesso, Lorenzo
Spreij, Peter
description We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.
doi_str_mv 10.1109/TIT.2023.3244407
format Article
fullrecord <record><control><sourceid>proquest_RIE</sourceid><recordid>TN_cdi_proquest_journals_2815690889</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>10042466</ieee_id><sourcerecordid>2815690889</sourcerecordid><originalsourceid>FETCH-LOGICAL-c292t-86b42f6e432146155c7e8b42480799832e25ac9e5b306a392fac8b596ab9d78c3</originalsourceid><addsrcrecordid>eNpNkM1LxDAQxYMoWFfvHjwUPLeb7yZHWXRdWPBSzyGNU-zSbWrSFvzvzbJ78DS84b2Zxw-hR4JLQrBe17u6pJiyklHOOa6uUEaEqAotBb9GGcZEFZpzdYvuYjwkyQWhGVrX35B3wwIhQj4G3_RwzH2bjz52U7dAbufJOz8svp-nzg_36Ka1fYSHy1yhz7fXevNe7D-2u83LvnBU06lQsuG0lcAZJVymIq4ClVZc4UprxShQYZ0G0TAsLdO0tU41Qkvb6K9KObZCz-e7qdPPDHEyBz-HIb00VBEhNVZKJxc-u1zwMQZozRi6ow2_hmBzwmISFnPCYi5YUuTpHOkA4J8dp3JSsj-VNFzj</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2815690889</pqid></control><display><type>article</type><title>The inverse problem of positive autoconvolution</title><source>IEEE Electronic Library (IEL)</source><creator>Finesso, Lorenzo ; Spreij, Peter</creator><creatorcontrib>Finesso, Lorenzo ; Spreij, Peter</creatorcontrib><description>We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.</description><identifier>ISSN: 0018-9448</identifier><identifier>EISSN: 1557-9654</identifier><identifier>DOI: 10.1109/TIT.2023.3244407</identifier><identifier>CODEN: IETTAW</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>alternating minimization ; Approximation ; Approximation algorithms ; Asymptotic properties ; autoconvolution ; Behavioral sciences ; Convergence ; Convolution ; Divergence ; I-divergence ; inverse problem ; Inverse problems ; Iterative algorithms ; Iterative methods ; Minimization ; Optimality criteria ; Optimization ; positive system ; Signal processing algorithms</subject><ispartof>IEEE transactions on information theory, 2023-06, Vol.69 (6), p.1-1</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c292t-86b42f6e432146155c7e8b42480799832e25ac9e5b306a392fac8b596ab9d78c3</citedby><cites>FETCH-LOGICAL-c292t-86b42f6e432146155c7e8b42480799832e25ac9e5b306a392fac8b596ab9d78c3</cites><orcidid>0000-0002-6416-6320 ; 0000-0001-9740-0278</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/10042466$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,792,27903,27904,54736</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/10042466$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Finesso, Lorenzo</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><title>The inverse problem of positive autoconvolution</title><title>IEEE transactions on information theory</title><addtitle>TIT</addtitle><description>We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.</description><subject>alternating minimization</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Asymptotic properties</subject><subject>autoconvolution</subject><subject>Behavioral sciences</subject><subject>Convergence</subject><subject>Convolution</subject><subject>Divergence</subject><subject>I-divergence</subject><subject>inverse problem</subject><subject>Inverse problems</subject><subject>Iterative algorithms</subject><subject>Iterative methods</subject><subject>Minimization</subject><subject>Optimality criteria</subject><subject>Optimization</subject><subject>positive system</subject><subject>Signal processing algorithms</subject><issn>0018-9448</issn><issn>1557-9654</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>RIE</sourceid><recordid>eNpNkM1LxDAQxYMoWFfvHjwUPLeb7yZHWXRdWPBSzyGNU-zSbWrSFvzvzbJ78DS84b2Zxw-hR4JLQrBe17u6pJiyklHOOa6uUEaEqAotBb9GGcZEFZpzdYvuYjwkyQWhGVrX35B3wwIhQj4G3_RwzH2bjz52U7dAbufJOz8svp-nzg_36Ka1fYSHy1yhz7fXevNe7D-2u83LvnBU06lQsuG0lcAZJVymIq4ClVZc4UprxShQYZ0G0TAsLdO0tU41Qkvb6K9KObZCz-e7qdPPDHEyBz-HIb00VBEhNVZKJxc-u1zwMQZozRi6ow2_hmBzwmISFnPCYi5YUuTpHOkA4J8dp3JSsj-VNFzj</recordid><startdate>20230601</startdate><enddate>20230601</enddate><creator>Finesso, Lorenzo</creator><creator>Spreij, Peter</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-6416-6320</orcidid><orcidid>https://orcid.org/0000-0001-9740-0278</orcidid></search><sort><creationdate>20230601</creationdate><title>The inverse problem of positive autoconvolution</title><author>Finesso, Lorenzo ; Spreij, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c292t-86b42f6e432146155c7e8b42480799832e25ac9e5b306a392fac8b596ab9d78c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>alternating minimization</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Asymptotic properties</topic><topic>autoconvolution</topic><topic>Behavioral sciences</topic><topic>Convergence</topic><topic>Convolution</topic><topic>Divergence</topic><topic>I-divergence</topic><topic>inverse problem</topic><topic>Inverse problems</topic><topic>Iterative algorithms</topic><topic>Iterative methods</topic><topic>Minimization</topic><topic>Optimality criteria</topic><topic>Optimization</topic><topic>positive system</topic><topic>Signal processing algorithms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Finesso, Lorenzo</creatorcontrib><creatorcontrib>Spreij, Peter</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on information theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Finesso, Lorenzo</au><au>Spreij, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The inverse problem of positive autoconvolution</atitle><jtitle>IEEE transactions on information theory</jtitle><stitle>TIT</stitle><date>2023-06-01</date><risdate>2023</risdate><volume>69</volume><issue>6</issue><spage>1</spage><epage>1</epage><pages>1-1</pages><issn>0018-9448</issn><eissn>1557-9654</eissn><coden>IETTAW</coden><abstract>We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIT.2023.3244407</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6416-6320</orcidid><orcidid>https://orcid.org/0000-0001-9740-0278</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0018-9448
ispartof IEEE transactions on information theory, 2023-06, Vol.69 (6), p.1-1
issn 0018-9448
1557-9654
language eng
recordid cdi_proquest_journals_2815690889
source IEEE Electronic Library (IEL)
subjects alternating minimization
Approximation
Approximation algorithms
Asymptotic properties
autoconvolution
Behavioral sciences
Convergence
Convolution
Divergence
I-divergence
inverse problem
Inverse problems
Iterative algorithms
Iterative methods
Minimization
Optimality criteria
Optimization
positive system
Signal processing algorithms
title The inverse problem of positive autoconvolution
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T07%3A28%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_RIE&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20inverse%20problem%20of%20positive%20autoconvolution&rft.jtitle=IEEE%20transactions%20on%20information%20theory&rft.au=Finesso,%20Lorenzo&rft.date=2023-06-01&rft.volume=69&rft.issue=6&rft.spage=1&rft.epage=1&rft.pages=1-1&rft.issn=0018-9448&rft.eissn=1557-9654&rft.coden=IETTAW&rft_id=info:doi/10.1109/TIT.2023.3244407&rft_dat=%3Cproquest_RIE%3E2815690889%3C/proquest_RIE%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2815690889&rft_id=info:pmid/&rft_ieee_id=10042466&rfr_iscdi=true