The inverse problem of positive autoconvolution

We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximatio...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transactions on information theory 2023-06, Vol.69 (6), p.1-1
Hauptverfasser: Finesso, Lorenzo, Spreij, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We pose the problem of approximating optimally a given nonnegative signal with the scalar autoconvolution of a nonnegative signal. The I-divergence is chosen as the optimality criterion being well suited to incorporate nonnegativity constraints. After proving the existence of an optimal approximation, we derive an iterative descent algorithm of the alternating minimization type to find a minimizer. The algorithm is based on the lifting technique developed by Csiszár and Tusnádi and exploits the optimality properties of the related minimization problems in the larger space. We study the asymptotic behavior of the iterative algorithm and prove, among other results, that its limit points are Kuhn-Tucker points of the original minimization problem. Numerical experiments confirm the asymptotic results and exhibit the fast convergence of the proposed algorithm.
ISSN:0018-9448
1557-9654
DOI:10.1109/TIT.2023.3244407