LPOA-DRN: Deep learning based feature fusion and optimization enabled Deep Residual Network for classification of Motor Imagery EEG signals

In this research, the classification method for MI-based EEG signals has been developed using the Lion Political Optimization Algorithm-based Deep Residual Network (LPOA-based DRN) to address these issues. The proposed model employs the technique of data augmentation to generate the best classificat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Signal, image and video processing image and video processing, 2023-07, Vol.17 (5), p.2167-2175
Hauptverfasser: M.S, Gouri, Grace, K. S. Vijula
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this research, the classification method for MI-based EEG signals has been developed using the Lion Political Optimization Algorithm-based Deep Residual Network (LPOA-based DRN) to address these issues. The proposed model employs the technique of data augmentation to generate the best classification outcomes with additional training examples. By altering the training data, the developed strategy improves efficiency in terms of specificity, accuracy, and sensitivity with values of 0.921, 0.904, and 0.866.
ISSN:1863-1703
1863-1711
DOI:10.1007/s11760-022-02431-9