Rings whose associated extended zero-divisor graphs are complemented
Let \(R\) be a commutative ring with identity \(1\neq 0\). In this paper, we continue the study started in [10] concerning when the extended zero-divisor graph of \(R\), \(\overline{\Gamma}(R)\), is complemented. We also study when \(\overline{\Gamma}(R)\) is uniquely complemented. We give a complet...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let \(R\) be a commutative ring with identity \(1\neq 0\). In this paper, we continue the study started in [10] concerning when the extended zero-divisor graph of \(R\), \(\overline{\Gamma}(R)\), is complemented. We also study when \(\overline{\Gamma}(R)\) is uniquely complemented. We give a complete characterization of when \(\overline{\Gamma}(R)\) of a finite ring is complemented. Various examples are given using the direct product of rings and idealizations of modules. |
---|---|
ISSN: | 2331-8422 |