Polynomial Entropy of Induced Maps of Circle and Interval Homeomorphisms
We compute the polynomial entropy of the induced maps on hyperspace for a homeomorphism f of an interval or a circle with finitely many non-wandering points. Also, we give a generalization for the case of an interval homeomorphism with an infinite non-wandering set.
Gespeichert in:
Veröffentlicht in: | Qualitative theory of dynamical systems 2023-09, Vol.22 (3), Article 103 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We compute the polynomial entropy of the induced maps on hyperspace for a homeomorphism
f
of an interval or a circle with finitely many non-wandering points. Also, we give a generalization for the case of an interval homeomorphism with an infinite non-wandering set. |
---|---|
ISSN: | 1575-5460 1662-3592 |
DOI: | 10.1007/s12346-023-00806-y |