Positive solutions for singular p(z)$p(z)$‐equations
We consider a Dirichlet problem driven by the anisotropic p‐Laplacian, with a reaction having the competing effects of a singular term and a parametric superlinear perturbation. We prove a bifurcation‐type theorem describing the changes of the set of positive solutions as the parameter varies. We al...
Gespeichert in:
Veröffentlicht in: | Mathematische Nachrichten 2023-05, Vol.296 (5), p.2024-2045 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We consider a Dirichlet problem driven by the anisotropic p‐Laplacian, with a reaction having the competing effects of a singular term and a parametric superlinear perturbation. We prove a bifurcation‐type theorem describing the changes of the set of positive solutions as the parameter varies. We also prove the existence of minimal positive solutions. |
---|---|
ISSN: | 0025-584X 1522-2616 |
DOI: | 10.1002/mana.202100288 |