Symmetric cubic polynomials
We describe a model \(\mathcal{M}_3^{comb}\) for the boundary of the connectedness locus \(\mathcal{M}^{sy}_3\) of the parameter space of cubic symmetric polynomials \(p_c(z)=z^3-3c^2z\). We show that there exists a monotone continuous function \(\pi:\partial \mathcal{M}_c^{sy}\to \mathcal{M}_3^{com...
Gespeichert in:
Veröffentlicht in: | arXiv.org 2023-05 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We describe a model \(\mathcal{M}_3^{comb}\) for the boundary of the connectedness locus \(\mathcal{M}^{sy}_3\) of the parameter space of cubic symmetric polynomials \(p_c(z)=z^3-3c^2z\). We show that there exists a monotone continuous function \(\pi:\partial \mathcal{M}_c^{sy}\to \mathcal{M}_3^{comb}\) which is a homeomorphism if \(\mathcal{M}^{sy}_3\) is locally connected. |
---|---|
ISSN: | 2331-8422 |