Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000

Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-05, Vol.963, Article A16
Hauptverfasser: Zhang, Dong, Huang, Wei-Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue
container_start_page
container_title Journal of fluid mechanics
container_volume 963
creator Zhang, Dong
Huang, Wei-Xi
description Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.
doi_str_mv 10.1017/jfm.2023.325
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813837233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_325</cupid><sourcerecordid>2813837233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</originalsourceid><addsrcrecordid>eNptkN9KwzAchYMoOKd3PkDAW1t_-dOku5ShmzIQRK9D0iSzY21m0iJ9G5_FJ7NjA2-8OjffOQc-hK4J5ASIvNv4JqdAWc5ocYImhItZJgUvTtEEgNKMEArn6CKlDQBhMJMT9LwcbAx2aHVTVwkHjzVOX3XT1O0aG92F2mJfpw-sO_zqhjZsbcJt3xgXE-53uAuY8PLnGwAu0ZnX2-SujjlF748Pb_NltnpZPM3vV1nFgHYZFyUI5qyRHEzJiXCeC1JZrQstKut0QYXlQmrPpGTCeKFLUxWMcgZFIYBN0c1hdxfDZ-9Spzahj-14qWhJWMkkZWykbg9UFUNK0Xm1i3Wj46AIqL0tNdpSe1tqtDXi-RHXjYm1Xbu_1X8Lvy70auc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813837233</pqid></control><display><type>article</type><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><source>Cambridge Journals</source><creator>Zhang, Dong ; Huang, Wei-Xi</creator><creatorcontrib>Zhang, Dong ; Huang, Wei-Xi</creatorcontrib><description>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.325</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic animals ; Computational fluid dynamics ; Efficiency ; Fish ; Flow separation ; Fluctuations ; Fluid flow ; Fluid mechanics ; Frequency spectra ; Frequency spectrum ; Hydrodynamics ; JFM Papers ; Kinematics ; Large eddy simulation ; Numerical analysis ; Oceanic eddies ; Pressure distribution ; Reptiles &amp; amphibians ; Reynolds number ; Simulation ; Swimming ; Three dimensional flow ; Turbulence ; Vortices</subject><ispartof>Journal of fluid mechanics, 2023-05, Vol.963, Article A16</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</citedby><cites>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</cites><orcidid>0000-0002-6182-0737 ; 0000-0003-4149-3369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023003257/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Huang, Wei-Xi</creatorcontrib><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</description><subject>Aquatic animals</subject><subject>Computational fluid dynamics</subject><subject>Efficiency</subject><subject>Fish</subject><subject>Flow separation</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>Hydrodynamics</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Large eddy simulation</subject><subject>Numerical analysis</subject><subject>Oceanic eddies</subject><subject>Pressure distribution</subject><subject>Reptiles &amp; amphibians</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Swimming</subject><subject>Three dimensional flow</subject><subject>Turbulence</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkN9KwzAchYMoOKd3PkDAW1t_-dOku5ShmzIQRK9D0iSzY21m0iJ9G5_FJ7NjA2-8OjffOQc-hK4J5ASIvNv4JqdAWc5ocYImhItZJgUvTtEEgNKMEArn6CKlDQBhMJMT9LwcbAx2aHVTVwkHjzVOX3XT1O0aG92F2mJfpw-sO_zqhjZsbcJt3xgXE-53uAuY8PLnGwAu0ZnX2-SujjlF748Pb_NltnpZPM3vV1nFgHYZFyUI5qyRHEzJiXCeC1JZrQstKut0QYXlQmrPpGTCeKFLUxWMcgZFIYBN0c1hdxfDZ-9Spzahj-14qWhJWMkkZWykbg9UFUNK0Xm1i3Wj46AIqL0tNdpSe1tqtDXi-RHXjYm1Xbu_1X8Lvy70auc</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Zhang, Dong</creator><creator>Huang, Wei-Xi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6182-0737</orcidid><orcidid>https://orcid.org/0000-0003-4149-3369</orcidid></search><sort><creationdate>20230516</creationdate><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><author>Zhang, Dong ; Huang, Wei-Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic animals</topic><topic>Computational fluid dynamics</topic><topic>Efficiency</topic><topic>Fish</topic><topic>Flow separation</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>Hydrodynamics</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Large eddy simulation</topic><topic>Numerical analysis</topic><topic>Oceanic eddies</topic><topic>Pressure distribution</topic><topic>Reptiles &amp; amphibians</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Swimming</topic><topic>Three dimensional flow</topic><topic>Turbulence</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Huang, Wei-Xi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Earth, Atmospheric &amp; Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering &amp; Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dong</au><au>Huang, Wei-Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>963</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.325</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6182-0737</orcidid><orcidid>https://orcid.org/0000-0003-4149-3369</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0022-1120
ispartof Journal of fluid mechanics, 2023-05, Vol.963, Article A16
issn 0022-1120
1469-7645
language eng
recordid cdi_proquest_journals_2813837233
source Cambridge Journals
subjects Aquatic animals
Computational fluid dynamics
Efficiency
Fish
Flow separation
Fluctuations
Fluid flow
Fluid mechanics
Frequency spectra
Frequency spectrum
Hydrodynamics
JFM Papers
Kinematics
Large eddy simulation
Numerical analysis
Oceanic eddies
Pressure distribution
Reptiles & amphibians
Reynolds number
Simulation
Swimming
Three dimensional flow
Turbulence
Vortices
title Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20of%20a%20swimming%20batoid%20fish%20at%20Reynolds%20numbers%20up%20to%20148%C2%A0000&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhang,%20Dong&rft.date=2023-05-16&rft.volume=963&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.325&rft_dat=%3Cproquest_cross%3E2813837233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813837233&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_325&rfr_iscdi=true