Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000
Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming st...
Gespeichert in:
Veröffentlicht in: | Journal of fluid mechanics 2023-05, Vol.963, Article A16 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | |
container_start_page | |
container_title | Journal of fluid mechanics |
container_volume | 963 |
creator | Zhang, Dong Huang, Wei-Xi |
description | Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms. |
doi_str_mv | 10.1017/jfm.2023.325 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813837233</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cupid>10_1017_jfm_2023_325</cupid><sourcerecordid>2813837233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</originalsourceid><addsrcrecordid>eNptkN9KwzAchYMoOKd3PkDAW1t_-dOku5ShmzIQRK9D0iSzY21m0iJ9G5_FJ7NjA2-8OjffOQc-hK4J5ASIvNv4JqdAWc5ocYImhItZJgUvTtEEgNKMEArn6CKlDQBhMJMT9LwcbAx2aHVTVwkHjzVOX3XT1O0aG92F2mJfpw-sO_zqhjZsbcJt3xgXE-53uAuY8PLnGwAu0ZnX2-SujjlF748Pb_NltnpZPM3vV1nFgHYZFyUI5qyRHEzJiXCeC1JZrQstKut0QYXlQmrPpGTCeKFLUxWMcgZFIYBN0c1hdxfDZ-9Spzahj-14qWhJWMkkZWykbg9UFUNK0Xm1i3Wj46AIqL0tNdpSe1tqtDXi-RHXjYm1Xbu_1X8Lvy70auc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813837233</pqid></control><display><type>article</type><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><source>Cambridge Journals</source><creator>Zhang, Dong ; Huang, Wei-Xi</creator><creatorcontrib>Zhang, Dong ; Huang, Wei-Xi</creatorcontrib><description>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</description><identifier>ISSN: 0022-1120</identifier><identifier>EISSN: 1469-7645</identifier><identifier>DOI: 10.1017/jfm.2023.325</identifier><language>eng</language><publisher>Cambridge, UK: Cambridge University Press</publisher><subject>Aquatic animals ; Computational fluid dynamics ; Efficiency ; Fish ; Flow separation ; Fluctuations ; Fluid flow ; Fluid mechanics ; Frequency spectra ; Frequency spectrum ; Hydrodynamics ; JFM Papers ; Kinematics ; Large eddy simulation ; Numerical analysis ; Oceanic eddies ; Pressure distribution ; Reptiles & amphibians ; Reynolds number ; Simulation ; Swimming ; Three dimensional flow ; Turbulence ; Vortices</subject><ispartof>Journal of fluid mechanics, 2023-05, Vol.963, Article A16</ispartof><rights>The Author(s), 2023. Published by Cambridge University Press</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</citedby><cites>FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</cites><orcidid>0000-0002-6182-0737 ; 0000-0003-4149-3369</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.cambridge.org/core/product/identifier/S0022112023003257/type/journal_article$$EHTML$$P50$$Gcambridge$$H</linktohtml><link.rule.ids>164,314,780,784,27923,27924,55627</link.rule.ids></links><search><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Huang, Wei-Xi</creatorcontrib><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><title>Journal of fluid mechanics</title><addtitle>J. Fluid Mech</addtitle><description>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</description><subject>Aquatic animals</subject><subject>Computational fluid dynamics</subject><subject>Efficiency</subject><subject>Fish</subject><subject>Flow separation</subject><subject>Fluctuations</subject><subject>Fluid flow</subject><subject>Fluid mechanics</subject><subject>Frequency spectra</subject><subject>Frequency spectrum</subject><subject>Hydrodynamics</subject><subject>JFM Papers</subject><subject>Kinematics</subject><subject>Large eddy simulation</subject><subject>Numerical analysis</subject><subject>Oceanic eddies</subject><subject>Pressure distribution</subject><subject>Reptiles & amphibians</subject><subject>Reynolds number</subject><subject>Simulation</subject><subject>Swimming</subject><subject>Three dimensional flow</subject><subject>Turbulence</subject><subject>Vortices</subject><issn>0022-1120</issn><issn>1469-7645</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNptkN9KwzAchYMoOKd3PkDAW1t_-dOku5ShmzIQRK9D0iSzY21m0iJ9G5_FJ7NjA2-8OjffOQc-hK4J5ASIvNv4JqdAWc5ocYImhItZJgUvTtEEgNKMEArn6CKlDQBhMJMT9LwcbAx2aHVTVwkHjzVOX3XT1O0aG92F2mJfpw-sO_zqhjZsbcJt3xgXE-53uAuY8PLnGwAu0ZnX2-SujjlF748Pb_NltnpZPM3vV1nFgHYZFyUI5qyRHEzJiXCeC1JZrQstKut0QYXlQmrPpGTCeKFLUxWMcgZFIYBN0c1hdxfDZ-9Spzahj-14qWhJWMkkZWykbg9UFUNK0Xm1i3Wj46AIqL0tNdpSe1tqtDXi-RHXjYm1Xbu_1X8Lvy70auc</recordid><startdate>20230516</startdate><enddate>20230516</enddate><creator>Zhang, Dong</creator><creator>Huang, Wei-Xi</creator><general>Cambridge University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TB</scope><scope>7U5</scope><scope>7UA</scope><scope>7XB</scope><scope>88I</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>F1W</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H8D</scope><scope>H96</scope><scope>HCIFZ</scope><scope>KR7</scope><scope>L.G</scope><scope>L6V</scope><scope>L7M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>S0W</scope><orcidid>https://orcid.org/0000-0002-6182-0737</orcidid><orcidid>https://orcid.org/0000-0003-4149-3369</orcidid></search><sort><creationdate>20230516</creationdate><title>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</title><author>Zhang, Dong ; Huang, Wei-Xi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c302t-468063edb740b8416ef461cdaa5a6cdea526d467af37736bf6a8bc53243055603</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Aquatic animals</topic><topic>Computational fluid dynamics</topic><topic>Efficiency</topic><topic>Fish</topic><topic>Flow separation</topic><topic>Fluctuations</topic><topic>Fluid flow</topic><topic>Fluid mechanics</topic><topic>Frequency spectra</topic><topic>Frequency spectrum</topic><topic>Hydrodynamics</topic><topic>JFM Papers</topic><topic>Kinematics</topic><topic>Large eddy simulation</topic><topic>Numerical analysis</topic><topic>Oceanic eddies</topic><topic>Pressure distribution</topic><topic>Reptiles & amphibians</topic><topic>Reynolds number</topic><topic>Simulation</topic><topic>Swimming</topic><topic>Three dimensional flow</topic><topic>Turbulence</topic><topic>Vortices</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhang, Dong</creatorcontrib><creatorcontrib>Huang, Wei-Xi</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Water Resources Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>SciTech Premium Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DELNET Engineering & Technology Collection</collection><jtitle>Journal of fluid mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhang, Dong</au><au>Huang, Wei-Xi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000</atitle><jtitle>Journal of fluid mechanics</jtitle><addtitle>J. Fluid Mech</addtitle><date>2023-05-16</date><risdate>2023</risdate><volume>963</volume><artnum>A16</artnum><issn>0022-1120</issn><eissn>1469-7645</eissn><abstract>Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.</abstract><cop>Cambridge, UK</cop><pub>Cambridge University Press</pub><doi>10.1017/jfm.2023.325</doi><tpages>26</tpages><orcidid>https://orcid.org/0000-0002-6182-0737</orcidid><orcidid>https://orcid.org/0000-0003-4149-3369</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0022-1120 |
ispartof | Journal of fluid mechanics, 2023-05, Vol.963, Article A16 |
issn | 0022-1120 1469-7645 |
language | eng |
recordid | cdi_proquest_journals_2813837233 |
source | Cambridge Journals |
subjects | Aquatic animals Computational fluid dynamics Efficiency Fish Flow separation Fluctuations Fluid flow Fluid mechanics Frequency spectra Frequency spectrum Hydrodynamics JFM Papers Kinematics Large eddy simulation Numerical analysis Oceanic eddies Pressure distribution Reptiles & amphibians Reynolds number Simulation Swimming Three dimensional flow Turbulence Vortices |
title | Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T22%3A35%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hydrodynamics%20of%20a%20swimming%20batoid%20fish%20at%20Reynolds%20numbers%20up%20to%20148%C2%A0000&rft.jtitle=Journal%20of%20fluid%20mechanics&rft.au=Zhang,%20Dong&rft.date=2023-05-16&rft.volume=963&rft.artnum=A16&rft.issn=0022-1120&rft.eissn=1469-7645&rft_id=info:doi/10.1017/jfm.2023.325&rft_dat=%3Cproquest_cross%3E2813837233%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813837233&rft_id=info:pmid/&rft_cupid=10_1017_jfm_2023_325&rfr_iscdi=true |