Hydrodynamics of a swimming batoid fish at Reynolds numbers up to 148 000

Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming st...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of fluid mechanics 2023-05, Vol.963, Article A16
Hauptverfasser: Zhang, Dong, Huang, Wei-Xi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Flow around a tethered model of a swimming batoid fish is studied by using the wall-modelled large-eddy simulation in conjunction with the immersed boundary method. A Reynolds number ($Re$) up to 148 000 is chosen, and it is comparable to that of a medium-sized aquatic animal in cruising swimming state. At such a high $Re$, we provide, to the best of our knowledge, the first evidence of hairpin vortical (HV) structures near the body surface using three-dimensional high-fidelity flow field data. It is observed that such small-scale vortical structures are mainly formed through two mechanisms: the leading-edge vortex (LEV)–secondary filament–HV and LEV–HV transformations in different regions. The HVs create strong fluctuations in the pressure distribution and frequency spectrum. Simulations are also conducted at $Re=1480$ and 14 800 to reveal the effect of Reynolds number. Variations of the flow separation behaviour and local pressure with $Re$ are presented. Our results indicate that low-$Re$ simulations are meaningful when the focus is on the force variation tendency, whereas high-$Re$ simulations are needed when concerning flow fluctuations and turbulence mechanisms.
ISSN:0022-1120
1469-7645
DOI:10.1017/jfm.2023.325