On the quantitative variation of congruence ideals and integral periods of modular forms

We prove the conjecture of Pollack and Weston on the quantitative analysis of the level lowering congruence à la Ribet for modular forms of higher weight. It was formulated and studied in the context of the integral Jacquet–Langlands correspondence and anticyclotomic Iwasawa theory for modular forms...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Research in the mathematical sciences 2023-06, Vol.10 (2), Article 22
Hauptverfasser: Kim, Chan-Ho, Ota, Kazuto
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove the conjecture of Pollack and Weston on the quantitative analysis of the level lowering congruence à la Ribet for modular forms of higher weight. It was formulated and studied in the context of the integral Jacquet–Langlands correspondence and anticyclotomic Iwasawa theory for modular forms of weight two and square-free level for the first time. We use a completely different method based on the R = T theorem established by Diamond–Flach–Guo and Dimitrov and an explicit comparison of adjoint L -values. We briefly discuss arithmetic applications of our main result at the end.
ISSN:2522-0144
2197-9847
DOI:10.1007/s40687-023-00387-x