A Priori Estimates for the Derivative Nonlinear Schrödinger Equation
We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index conditional upon small L2-norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip-V...
Gespeichert in:
Veröffentlicht in: | Funkcialaj Ekvacioj 2022/12/15, Vol.65(3), pp.329-346 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index conditional upon small L2-norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip-Vişan-Zhang for completely integrable PDE. This makes it possible to derive low regularity conservation laws from the perturbation determinant. |
---|---|
ISSN: | 0532-8721 |
DOI: | 10.1619/fesi.65.329 |