A Priori Estimates for the Derivative Nonlinear Schrödinger Equation

We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index conditional upon small L2-norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip-V...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Funkcialaj Ekvacioj 2022/12/15, Vol.65(3), pp.329-346
Hauptverfasser: Klaus, Friedrich, Schippa, Robert
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We prove low regularity a priori estimates for the derivative nonlinear Schrödinger equation in Besov spaces with positive regularity index conditional upon small L2-norm. This covers the full subcritical range. We use the power series expansion of the perturbation determinant introduced by Killip-Vişan-Zhang for completely integrable PDE. This makes it possible to derive low regularity conservation laws from the perturbation determinant.
ISSN:0532-8721
DOI:10.1619/fesi.65.329