Complete minors and average degree: A short proof
We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω ( d ∕ log d ) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$.
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-07, Vol.103 (3), p.599-602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 602 |
---|---|
container_issue | 3 |
container_start_page | 599 |
container_title | Journal of graph theory |
container_volume | 103 |
creator | Alon, Noga Krivelevich, Michael Sudakov, Benny |
description | We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω
(
d
∕
log
d
) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$. |
doi_str_mv | 10.1002/jgt.22937 |
format | Article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813464585</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813464585</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2577-6b26458eca3f49829a1329dbbd53f7cf741927c05a8b27dd5eb5ad281359f4363</originalsourceid><addsrcrecordid>eNp1kD1PwzAURS0EEqEw8A8sMTGk9Wccs1UVFFAlljJbTvwcWqV1sFNQ_z0pYWV60tO590oHoVtKppQQNts2_ZQxzdUZyijRKieUlucoI7wQuSZMXKKrlLZkeEtSZoguwq5roQe82-xDTNjuHbZfEG0D2EETAR7wHKePEHvcxRD8Nbrwtk1w83cn6P3pcb14zldvy5fFfJXXTCqVFxUrhCyhttwLXTJtKWfaVZWT3KvaK0E1UzWRtqyYck5CJa1jJeVSe8ELPkF3Y--w-nmA1JttOMT9MGlOlDi1y4G6H6k6hpQieNPFzc7Go6HEnIyYwYj5NTKws5H93rRw_B80r8v1mPgBuU5gMg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813464585</pqid></control><display><type>article</type><title>Complete minors and average degree: A short proof</title><source>Wiley Online Library - AutoHoldings Journals</source><creator>Alon, Noga ; Krivelevich, Michael ; Sudakov, Benny</creator><creatorcontrib>Alon, Noga ; Krivelevich, Michael ; Sudakov, Benny</creatorcontrib><description>We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω
(
d
∕
log
d
) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$.</description><identifier>ISSN: 0364-9024</identifier><identifier>EISSN: 1097-0118</identifier><identifier>DOI: 10.1002/jgt.22937</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc</publisher><subject>clique minors ; Completeness ; probabilistic methods</subject><ispartof>Journal of graph theory, 2023-07, Vol.103 (3), p.599-602</ispartof><rights>2023 Wiley Periodicals LLC.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c2577-6b26458eca3f49829a1329dbbd53f7cf741927c05a8b27dd5eb5ad281359f4363</cites><orcidid>0000-0003-2357-4982</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjgt.22937$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjgt.22937$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,1417,27924,27925,45574,45575</link.rule.ids></links><search><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Krivelevich, Michael</creatorcontrib><creatorcontrib>Sudakov, Benny</creatorcontrib><title>Complete minors and average degree: A short proof</title><title>Journal of graph theory</title><description>We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω
(
d
∕
log
d
) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$.</description><subject>clique minors</subject><subject>Completeness</subject><subject>probabilistic methods</subject><issn>0364-9024</issn><issn>1097-0118</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kD1PwzAURS0EEqEw8A8sMTGk9Wccs1UVFFAlljJbTvwcWqV1sFNQ_z0pYWV60tO590oHoVtKppQQNts2_ZQxzdUZyijRKieUlucoI7wQuSZMXKKrlLZkeEtSZoguwq5roQe82-xDTNjuHbZfEG0D2EETAR7wHKePEHvcxRD8Nbrwtk1w83cn6P3pcb14zldvy5fFfJXXTCqVFxUrhCyhttwLXTJtKWfaVZWT3KvaK0E1UzWRtqyYck5CJa1jJeVSe8ELPkF3Y--w-nmA1JttOMT9MGlOlDi1y4G6H6k6hpQieNPFzc7Go6HEnIyYwYj5NTKws5H93rRw_B80r8v1mPgBuU5gMg</recordid><startdate>202307</startdate><enddate>202307</enddate><creator>Alon, Noga</creator><creator>Krivelevich, Michael</creator><creator>Sudakov, Benny</creator><general>Wiley Subscription Services, Inc</general><scope>AAYXX</scope><scope>CITATION</scope><orcidid>https://orcid.org/0000-0003-2357-4982</orcidid></search><sort><creationdate>202307</creationdate><title>Complete minors and average degree: A short proof</title><author>Alon, Noga ; Krivelevich, Michael ; Sudakov, Benny</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2577-6b26458eca3f49829a1329dbbd53f7cf741927c05a8b27dd5eb5ad281359f4363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>clique minors</topic><topic>Completeness</topic><topic>probabilistic methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Alon, Noga</creatorcontrib><creatorcontrib>Krivelevich, Michael</creatorcontrib><creatorcontrib>Sudakov, Benny</creatorcontrib><collection>CrossRef</collection><jtitle>Journal of graph theory</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Alon, Noga</au><au>Krivelevich, Michael</au><au>Sudakov, Benny</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Complete minors and average degree: A short proof</atitle><jtitle>Journal of graph theory</jtitle><date>2023-07</date><risdate>2023</risdate><volume>103</volume><issue>3</issue><spage>599</spage><epage>602</epage><pages>599-602</pages><issn>0364-9024</issn><eissn>1097-0118</eissn><abstract>We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω
(
d
∕
log
d
) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc</pub><doi>10.1002/jgt.22937</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0003-2357-4982</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0364-9024 |
ispartof | Journal of graph theory, 2023-07, Vol.103 (3), p.599-602 |
issn | 0364-9024 1097-0118 |
language | eng |
recordid | cdi_proquest_journals_2813464585 |
source | Wiley Online Library - AutoHoldings Journals |
subjects | clique minors Completeness probabilistic methods |
title | Complete minors and average degree: A short proof |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T05%3A54%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Complete%20minors%20and%20average%20degree:%20A%20short%20proof&rft.jtitle=Journal%20of%20graph%20theory&rft.au=Alon,%20Noga&rft.date=2023-07&rft.volume=103&rft.issue=3&rft.spage=599&rft.epage=602&rft.pages=599-602&rft.issn=0364-9024&rft.eissn=1097-0118&rft_id=info:doi/10.1002/jgt.22937&rft_dat=%3Cproquest_cross%3E2813464585%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813464585&rft_id=info:pmid/&rfr_iscdi=true |