Complete minors and average degree: A short proof
We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω ( d ∕ log d ) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$.
Gespeichert in:
Veröffentlicht in: | Journal of graph theory 2023-07, Vol.103 (3), p.599-602 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We provide a short and self‐contained proof of the classical result of Kostochka and of Thomason, ensuring that every graph of average degree d $d$ has a complete minor of order Ω
(
d
∕
log
d
) ${\rm{\Omega }}(d\unicode{x02215}\sqrt{{\rm{log}}d})$. |
---|---|
ISSN: | 0364-9024 1097-0118 |
DOI: | 10.1002/jgt.22937 |