A Dynamic Baseline Calibration Procedure for CGE models
Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods....
Gespeichert in:
Veröffentlicht in: | Computational economics 2023-04, Vol.61 (4), p.1331-1368 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1368 |
---|---|
container_issue | 4 |
container_start_page | 1331 |
container_title | Computational economics |
container_volume | 61 |
creator | Ziesmer, Johannes Jin, Ding Thube, Sneha D Henning, Christian |
description | Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods. We propose a general, Bayesian approach that can be employed to build a baseline for any recursive-dynamic CGE model. We use metamodeling techniques to transform the calibration problem into a tractable optimization problem while simultaneously reducing the computational costs. This transformation allows us to derive the exogenous model parameters that are needed to match the projections. We demonstrate how to apply the approach using a simple CGE and supply the full code. Additionally, we apply our method to a multi-region, multi-sector model and show that calibrated parameters matter as policy implications derived from simulations differ significantly between them. |
doi_str_mv | 10.1007/s10614-022-10248-4 |
format | Article |
fullrecord | <record><control><sourceid>gale_proqu</sourceid><recordid>TN_cdi_proquest_journals_2813085177</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A749278194</galeid><sourcerecordid>A749278194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c492t-4eef1bbdeffcf45ebf8c1c6c46e93403d9c7a78c0c9cb36d55007615f2c6e3ad3</originalsourceid><addsrcrecordid>eNp9kD9PwzAQxS0EEqXwBZgiMaf4X2J7LKUUpEowwGw5zrlylcbFTod-e1yC1A3dYOn8fu_uHkL3BM8IxuIxEVwTXmJKS4IplyW_QBNSCVoqJfglmmBFRSmwUtfoJqUtxrgilE6QmBfPx97svC2eTILO91AsTOebaAYf-uIjBgvtIULhQiwWq2WxCy106RZdOdMluPt7p-jrZfm5eC3X76u3xXxdWq7oUHIAR5qmBees4xU0Tlpia8trUIxj1iorjJAWW2UbVrdVla-pSeWorYGZlk3Rw-i7j-H7AGnQ23CIfR6pqSQMy4oIkVWzUbUxHWjfuzBEY3O1kC8LPTif-3ORdxKSKJ4BOgI2hpQiOL2PfmfiUROsT4nqMVGdE9W_ieoTVIwQZEufzoisaqa44jJL2ChJ-bPfQDyv-4_xD2QcggA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813085177</pqid></control><display><type>article</type><title>A Dynamic Baseline Calibration Procedure for CGE models</title><source>SpringerLink Journals - AutoHoldings</source><creator>Ziesmer, Johannes ; Jin, Ding ; Thube, Sneha D ; Henning, Christian</creator><creatorcontrib>Ziesmer, Johannes ; Jin, Ding ; Thube, Sneha D ; Henning, Christian</creatorcontrib><description>Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods. We propose a general, Bayesian approach that can be employed to build a baseline for any recursive-dynamic CGE model. We use metamodeling techniques to transform the calibration problem into a tractable optimization problem while simultaneously reducing the computational costs. This transformation allows us to derive the exogenous model parameters that are needed to match the projections. We demonstrate how to apply the approach using a simple CGE and supply the full code. Additionally, we apply our method to a multi-region, multi-sector model and show that calibrated parameters matter as policy implications derived from simulations differ significantly between them.</description><identifier>ISSN: 0927-7099</identifier><identifier>EISSN: 1572-9974</identifier><identifier>DOI: 10.1007/s10614-022-10248-4</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Analysis ; Bayesian analysis ; Behavioral/Experimental Economics ; Calibration ; Computer Appl. in Social and Behavioral Sciences ; Economic Theory/Quantitative Economics/Mathematical Methods ; Economics ; Economics and Finance ; Entropy ; Environmental policy ; Equilibrium ; Math Applications in Computer Science ; Mathematical models ; Metamodels ; Operations Research/Decision Theory ; Optimization ; Parameter estimation ; Parameters ; Projections ; Simulation methods ; Transformation</subject><ispartof>Computational economics, 2023-04, Vol.61 (4), p.1331-1368</ispartof><rights>The Author(s) 2022</rights><rights>COPYRIGHT 2023 Springer</rights><rights>The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c492t-4eef1bbdeffcf45ebf8c1c6c46e93403d9c7a78c0c9cb36d55007615f2c6e3ad3</citedby><cites>FETCH-LOGICAL-c492t-4eef1bbdeffcf45ebf8c1c6c46e93403d9c7a78c0c9cb36d55007615f2c6e3ad3</cites><orcidid>0000-0001-5950-4199</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10614-022-10248-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10614-022-10248-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27923,27924,41487,42556,51318</link.rule.ids></links><search><creatorcontrib>Ziesmer, Johannes</creatorcontrib><creatorcontrib>Jin, Ding</creatorcontrib><creatorcontrib>Thube, Sneha D</creatorcontrib><creatorcontrib>Henning, Christian</creatorcontrib><title>A Dynamic Baseline Calibration Procedure for CGE models</title><title>Computational economics</title><addtitle>Comput Econ</addtitle><description>Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods. We propose a general, Bayesian approach that can be employed to build a baseline for any recursive-dynamic CGE model. We use metamodeling techniques to transform the calibration problem into a tractable optimization problem while simultaneously reducing the computational costs. This transformation allows us to derive the exogenous model parameters that are needed to match the projections. We demonstrate how to apply the approach using a simple CGE and supply the full code. Additionally, we apply our method to a multi-region, multi-sector model and show that calibrated parameters matter as policy implications derived from simulations differ significantly between them.</description><subject>Analysis</subject><subject>Bayesian analysis</subject><subject>Behavioral/Experimental Economics</subject><subject>Calibration</subject><subject>Computer Appl. in Social and Behavioral Sciences</subject><subject>Economic Theory/Quantitative Economics/Mathematical Methods</subject><subject>Economics</subject><subject>Economics and Finance</subject><subject>Entropy</subject><subject>Environmental policy</subject><subject>Equilibrium</subject><subject>Math Applications in Computer Science</subject><subject>Mathematical models</subject><subject>Metamodels</subject><subject>Operations Research/Decision Theory</subject><subject>Optimization</subject><subject>Parameter estimation</subject><subject>Parameters</subject><subject>Projections</subject><subject>Simulation methods</subject><subject>Transformation</subject><issn>0927-7099</issn><issn>1572-9974</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kD9PwzAQxS0EEqXwBZgiMaf4X2J7LKUUpEowwGw5zrlylcbFTod-e1yC1A3dYOn8fu_uHkL3BM8IxuIxEVwTXmJKS4IplyW_QBNSCVoqJfglmmBFRSmwUtfoJqUtxrgilE6QmBfPx97svC2eTILO91AsTOebaAYf-uIjBgvtIULhQiwWq2WxCy106RZdOdMluPt7p-jrZfm5eC3X76u3xXxdWq7oUHIAR5qmBees4xU0Tlpia8trUIxj1iorjJAWW2UbVrdVla-pSeWorYGZlk3Rw-i7j-H7AGnQ23CIfR6pqSQMy4oIkVWzUbUxHWjfuzBEY3O1kC8LPTif-3ORdxKSKJ4BOgI2hpQiOL2PfmfiUROsT4nqMVGdE9W_ieoTVIwQZEufzoisaqa44jJL2ChJ-bPfQDyv-4_xD2QcggA</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Ziesmer, Johannes</creator><creator>Jin, Ding</creator><creator>Thube, Sneha D</creator><creator>Henning, Christian</creator><general>Springer US</general><general>Springer</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>OQ6</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AO</scope><scope>8BJ</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FQK</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JBE</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>M0C</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0001-5950-4199</orcidid></search><sort><creationdate>20230401</creationdate><title>A Dynamic Baseline Calibration Procedure for CGE models</title><author>Ziesmer, Johannes ; Jin, Ding ; Thube, Sneha D ; Henning, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c492t-4eef1bbdeffcf45ebf8c1c6c46e93403d9c7a78c0c9cb36d55007615f2c6e3ad3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Analysis</topic><topic>Bayesian analysis</topic><topic>Behavioral/Experimental Economics</topic><topic>Calibration</topic><topic>Computer Appl. in Social and Behavioral Sciences</topic><topic>Economic Theory/Quantitative Economics/Mathematical Methods</topic><topic>Economics</topic><topic>Economics and Finance</topic><topic>Entropy</topic><topic>Environmental policy</topic><topic>Equilibrium</topic><topic>Math Applications in Computer Science</topic><topic>Mathematical models</topic><topic>Metamodels</topic><topic>Operations Research/Decision Theory</topic><topic>Optimization</topic><topic>Parameter estimation</topic><topic>Parameters</topic><topic>Projections</topic><topic>Simulation methods</topic><topic>Transformation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ziesmer, Johannes</creatorcontrib><creatorcontrib>Jin, Ding</creatorcontrib><creatorcontrib>Thube, Sneha D</creatorcontrib><creatorcontrib>Henning, Christian</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>ECONIS</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>International Bibliography of the Social Sciences (IBSS)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>International Bibliography of the Social Sciences</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>International Bibliography of the Social Sciences</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ABI/INFORM Global</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><jtitle>Computational economics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ziesmer, Johannes</au><au>Jin, Ding</au><au>Thube, Sneha D</au><au>Henning, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Dynamic Baseline Calibration Procedure for CGE models</atitle><jtitle>Computational economics</jtitle><stitle>Comput Econ</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>61</volume><issue>4</issue><spage>1331</spage><epage>1368</epage><pages>1331-1368</pages><issn>0927-7099</issn><eissn>1572-9974</eissn><abstract>Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods. We propose a general, Bayesian approach that can be employed to build a baseline for any recursive-dynamic CGE model. We use metamodeling techniques to transform the calibration problem into a tractable optimization problem while simultaneously reducing the computational costs. This transformation allows us to derive the exogenous model parameters that are needed to match the projections. We demonstrate how to apply the approach using a simple CGE and supply the full code. Additionally, we apply our method to a multi-region, multi-sector model and show that calibrated parameters matter as policy implications derived from simulations differ significantly between them.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s10614-022-10248-4</doi><tpages>38</tpages><orcidid>https://orcid.org/0000-0001-5950-4199</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0927-7099 |
ispartof | Computational economics, 2023-04, Vol.61 (4), p.1331-1368 |
issn | 0927-7099 1572-9974 |
language | eng |
recordid | cdi_proquest_journals_2813085177 |
source | SpringerLink Journals - AutoHoldings |
subjects | Analysis Bayesian analysis Behavioral/Experimental Economics Calibration Computer Appl. in Social and Behavioral Sciences Economic Theory/Quantitative Economics/Mathematical Methods Economics Economics and Finance Entropy Environmental policy Equilibrium Math Applications in Computer Science Mathematical models Metamodels Operations Research/Decision Theory Optimization Parameter estimation Parameters Projections Simulation methods Transformation |
title | A Dynamic Baseline Calibration Procedure for CGE models |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T04%3A33%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_proqu&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Dynamic%20Baseline%20Calibration%20Procedure%20for%20CGE%20models&rft.jtitle=Computational%20economics&rft.au=Ziesmer,%20Johannes&rft.date=2023-04-01&rft.volume=61&rft.issue=4&rft.spage=1331&rft.epage=1368&rft.pages=1331-1368&rft.issn=0927-7099&rft.eissn=1572-9974&rft_id=info:doi/10.1007/s10614-022-10248-4&rft_dat=%3Cgale_proqu%3EA749278194%3C/gale_proqu%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813085177&rft_id=info:pmid/&rft_galeid=A749278194&rfr_iscdi=true |