A Dynamic Baseline Calibration Procedure for CGE models

Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods....

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational economics 2023-04, Vol.61 (4), p.1331-1368
Hauptverfasser: Ziesmer, Johannes, Jin, Ding, Thube, Sneha D, Henning, Christian
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Baseline assumptions play a crucial role in conducting consistent quantitative policy assessments for dynamic Computable General Equilibrium (CGE) models. Two essential factors that influence the determination of the baselines are the data sources of projections and the applied calibration methods. We propose a general, Bayesian approach that can be employed to build a baseline for any recursive-dynamic CGE model. We use metamodeling techniques to transform the calibration problem into a tractable optimization problem while simultaneously reducing the computational costs. This transformation allows us to derive the exogenous model parameters that are needed to match the projections. We demonstrate how to apply the approach using a simple CGE and supply the full code. Additionally, we apply our method to a multi-region, multi-sector model and show that calibrated parameters matter as policy implications derived from simulations differ significantly between them.
ISSN:0927-7099
1572-9974
DOI:10.1007/s10614-022-10248-4