Well-Posedness of the Generalized Samarskii–Ionkin Problem for Elliptic Equations in a Cylindrical Domain

We study the well-posedness of some analogs of the nonlocal Samarskii–Ionkin problem for second-order elliptic equations in Sobolev spaces. For the problems in question, existence and uniqueness theorems are proved for regular solutions, i.e., solutions that have all generalized Sobolev derivatives...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Differential equations 2023-02, Vol.59 (2), p.230-242
Hauptverfasser: Kozhanov, A. I., Dyuzheva, A. V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We study the well-posedness of some analogs of the nonlocal Samarskii–Ionkin problem for second-order elliptic equations in Sobolev spaces. For the problems in question, existence and uniqueness theorems are proved for regular solutions, i.e., solutions that have all generalized Sobolev derivatives occurring in the corresponding equation. Some spectral problems for elliptic equations with the nonlocal Samarskii–Ionkin condition are studied.
ISSN:0012-2661
1608-3083
DOI:10.1134/S0012266123020076