Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices

We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-04, Vol.39 (4), p.618-632
1. Verfasser: Kovács, István
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 632
container_issue 4
container_start_page 618
container_title Acta mathematica Sinica. English series
container_volume 39
creator Kovács, István
description We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As an application, a formula is derived for the number of isomorphism classes of connected cubic Cayley graphs on dihedral groups, which generalises the earlier formula of Huang et al. dealing with the particular case when n is a prime ( Acta Math. Sin., Engl. Ser. , 33 , 996–1011 (2017)). As another application, a short proof is also given for a result on sparse circulant matrices obtained by Wiedemann and Zieve (arXiv preprint, (2007)).
doi_str_mv 10.1007/s10114-023-1415-4
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2813001158</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2813001158</sourcerecordid><originalsourceid>FETCH-LOGICAL-c268t-da007418faff54cccfdf2012fe110a78afb3d56a85afeb89a1c4edc9a86cb2083</originalsourceid><addsrcrecordid>eNp1kDFPwzAQhS0EEqXwA9gsMQd8iZ04IwpQkIoYKLN1cWyaKo2DnQz997hKJSamOz299-70EXIL7B4YKx4CMACesDRLgINI-BlZAM_KpMihOD_tUkB-Sa5C2DEmRMnyBdm8Bbd3fti2YR-os7Sa6lbTCg-dOdCVx2Eb5Z4-tVvTeOyi5KYhUOwb-jmgD4ZWrddTh_1I33H0rTbhmlxY7IK5Oc0l-Xp53lSvyfpj9VY9rhOd5nJMGoyfc5AWrRVca20bmzJIrQFgWEi0ddaIHKVAa2pZImhuGl2izHWdMpktyd3cO3j3M5kwqp2bfB9PqlRCxiIScXTB7NLeheCNVYNv9-gPCpg6wlMzPBXhqSM8xWMmnTMhevtv4_-a_w_9Alsnco0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2813001158</pqid></control><display><type>article</type><title>Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices</title><source>Springer Online Journals Complete</source><source>Alma/SFX Local Collection</source><creator>Kovács, István</creator><creatorcontrib>Kovács, István</creatorcontrib><description>We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As an application, a formula is derived for the number of isomorphism classes of connected cubic Cayley graphs on dihedral groups, which generalises the earlier formula of Huang et al. dealing with the particular case when n is a prime ( Acta Math. Sin., Engl. Ser. , 33 , 996–1011 (2017)). As another application, a short proof is also given for a result on sparse circulant matrices obtained by Wiedemann and Zieve (arXiv preprint, (2007)).</description><identifier>ISSN: 1439-8516</identifier><identifier>EISSN: 1439-7617</identifier><identifier>DOI: 10.1007/s10114-023-1415-4</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer Berlin Heidelberg</publisher><subject>Graphs ; Isomorphism ; Mathematics ; Mathematics and Statistics ; Matrices ; Matrix</subject><ispartof>Acta mathematica Sinica. English series, 2023-04, Vol.39 (4), p.618-632</ispartof><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023</rights><rights>Springer-Verlag GmbH Germany &amp; The Editorial Office of AMS 2023.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c268t-da007418faff54cccfdf2012fe110a78afb3d56a85afeb89a1c4edc9a86cb2083</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10114-023-1415-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10114-023-1415-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>315,781,785,27929,27930,41493,42562,51324</link.rule.ids></links><search><creatorcontrib>Kovács, István</creatorcontrib><title>Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices</title><title>Acta mathematica Sinica. English series</title><addtitle>Acta. Math. Sin.-English Ser</addtitle><description>We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As an application, a formula is derived for the number of isomorphism classes of connected cubic Cayley graphs on dihedral groups, which generalises the earlier formula of Huang et al. dealing with the particular case when n is a prime ( Acta Math. Sin., Engl. Ser. , 33 , 996–1011 (2017)). As another application, a short proof is also given for a result on sparse circulant matrices obtained by Wiedemann and Zieve (arXiv preprint, (2007)).</description><subject>Graphs</subject><subject>Isomorphism</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Matrices</subject><subject>Matrix</subject><issn>1439-8516</issn><issn>1439-7617</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNp1kDFPwzAQhS0EEqXwA9gsMQd8iZ04IwpQkIoYKLN1cWyaKo2DnQz997hKJSamOz299-70EXIL7B4YKx4CMACesDRLgINI-BlZAM_KpMihOD_tUkB-Sa5C2DEmRMnyBdm8Bbd3fti2YR-os7Sa6lbTCg-dOdCVx2Eb5Z4-tVvTeOyi5KYhUOwb-jmgD4ZWrddTh_1I33H0rTbhmlxY7IK5Oc0l-Xp53lSvyfpj9VY9rhOd5nJMGoyfc5AWrRVca20bmzJIrQFgWEi0ddaIHKVAa2pZImhuGl2izHWdMpktyd3cO3j3M5kwqp2bfB9PqlRCxiIScXTB7NLeheCNVYNv9-gPCpg6wlMzPBXhqSM8xWMmnTMhevtv4_-a_w_9Alsnco0</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Kovács, István</creator><general>Springer Berlin Heidelberg</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20230401</creationdate><title>Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices</title><author>Kovács, István</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c268t-da007418faff54cccfdf2012fe110a78afb3d56a85afeb89a1c4edc9a86cb2083</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Graphs</topic><topic>Isomorphism</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Matrices</topic><topic>Matrix</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kovács, István</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Acta mathematica Sinica. English series</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kovács, István</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices</atitle><jtitle>Acta mathematica Sinica. English series</jtitle><stitle>Acta. Math. Sin.-English Ser</stitle><date>2023-04-01</date><risdate>2023</risdate><volume>39</volume><issue>4</issue><spage>618</spage><epage>632</epage><pages>618-632</pages><issn>1439-8516</issn><eissn>1439-7617</eissn><abstract>We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As an application, a formula is derived for the number of isomorphism classes of connected cubic Cayley graphs on dihedral groups, which generalises the earlier formula of Huang et al. dealing with the particular case when n is a prime ( Acta Math. Sin., Engl. Ser. , 33 , 996–1011 (2017)). As another application, a short proof is also given for a result on sparse circulant matrices obtained by Wiedemann and Zieve (arXiv preprint, (2007)).</abstract><cop>Berlin/Heidelberg</cop><pub>Springer Berlin Heidelberg</pub><doi>10.1007/s10114-023-1415-4</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1439-8516
ispartof Acta mathematica Sinica. English series, 2023-04, Vol.39 (4), p.618-632
issn 1439-8516
1439-7617
language eng
recordid cdi_proquest_journals_2813001158
source Springer Online Journals Complete; Alma/SFX Local Collection
subjects Graphs
Isomorphism
Mathematics
Mathematics and Statistics
Matrices
Matrix
title Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-15T11%3A05%3A35IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Isomorphisms%20of%20Cubic%20Cayley%20Graphs%20on%20Dihedral%20Groups%20and%20Sparse%20Circulant%20Matrices&rft.jtitle=Acta%20mathematica%20Sinica.%20English%20series&rft.au=Kov%C3%A1cs,%20Istv%C3%A1n&rft.date=2023-04-01&rft.volume=39&rft.issue=4&rft.spage=618&rft.epage=632&rft.pages=618-632&rft.issn=1439-8516&rft.eissn=1439-7617&rft_id=info:doi/10.1007/s10114-023-1415-4&rft_dat=%3Cproquest_cross%3E2813001158%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2813001158&rft_id=info:pmid/&rfr_iscdi=true