Isomorphisms of Cubic Cayley Graphs on Dihedral Groups and Sparse Circulant Matrices

We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Acta mathematica Sinica. English series 2023-04, Vol.39 (4), p.618-632
1. Verfasser: Kovács, István
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show that, up to isomorphism, there is a unique non-CI connected cubic Cayley graph on the dihedral group of order 2 n for each even number n ≥ 4. This answers in the negative the question of Li whether all connected cubic Cayley graphs are CI-graphs ( Discrete Math. , 256 , 301–334 (2002)). As an application, a formula is derived for the number of isomorphism classes of connected cubic Cayley graphs on dihedral groups, which generalises the earlier formula of Huang et al. dealing with the particular case when n is a prime ( Acta Math. Sin., Engl. Ser. , 33 , 996–1011 (2017)). As another application, a short proof is also given for a result on sparse circulant matrices obtained by Wiedemann and Zieve (arXiv preprint, (2007)).
ISSN:1439-8516
1439-7617
DOI:10.1007/s10114-023-1415-4