Spatiotemporal Changes of Ecosystem Service Values in Response to Land Cover Dynamics in China from 1992 to 2020
Global land cover changed significantly in the last several decades due to strong climate warming and intensive human activities, and those changes greatly affected ecosystem services all over the world. Using CCI-LC land cover data from 1992 to 2020, the spatiotemporal characteristics of land cover...
Gespeichert in:
Veröffentlicht in: | Sustainability 2023-04, Vol.15 (9), p.7210 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Global land cover changed significantly in the last several decades due to strong climate warming and intensive human activities, and those changes greatly affected ecosystem services all over the world. Using CCI-LC land cover data from 1992 to 2020, the spatiotemporal characteristics of land cover change in China were investigated, and the annual ecosystem service values (ESVs) were estimated with the equivalent factor method. The results showed that: (1) The overall accuracy and Kappa coefficient of CCI-LC products in China were 71.1% and 0.65, respectively. (2) From 1992 to 2020, the area of cropland in China increased generally first before 2004 then decreased after 2008; the area of forest land decreased before 2003 then increased after 2015; the area of grassland and bare land consistently decreased; and the area of built-up land continuously increased, with a total increase of 113,000 km2. The primary characteristics of land cover transitions in China were the mutual conversion of cropland, forestland, and grassland as well as the continuous increase of built-up land. (3) Forest land was the most significant contributor of ESV in China, making 62.9% of the total ESV by multi-year average, followed by grassland (18.5%) and water (10.3%); the ESV was roughly high in the southeast China and low in the northwest. (4) The total ESV in China decreased generally before 2015 and got stable in the last five years. The hot spots with rising ESV were mainly concentrated in the western, northern and southwestern parts of China, while the cold spots with declining ESV were mainly concentrated in the economically developed eastern and southern China. (5) Cropland, forest land, grassland, and water were the positive contributors to ESV change in China, while built-up land and bare land were the negative contributors. The findings provide a theoretical foundation for China’s harmonized socioeconomic and environmental development. |
---|---|
ISSN: | 2071-1050 2071-1050 |
DOI: | 10.3390/su15097210 |