Birkhoff Normal Form and Long Time Existence for Periodic Gravity Water Waves

We consider the gravity water waves system with a periodic one‐dimensional interface in infinite depth and give a rigorous proof of a conjecture of Dyachenko‐Zakharov [16] concerning the approximate integrability of these equations. More precisely, we prove a rigorous reduction of the water waves eq...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Communications on pure and applied mathematics 2023-07, Vol.76 (7), p.1416-1494
Hauptverfasser: Berti, Massimiliano, Feola, Roberto, Pusateri, Fabio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We consider the gravity water waves system with a periodic one‐dimensional interface in infinite depth and give a rigorous proof of a conjecture of Dyachenko‐Zakharov [16] concerning the approximate integrability of these equations. More precisely, we prove a rigorous reduction of the water waves equations to its integrable Birkhoff normal form up to order 4. As a consequence, we also obtain a long‐time stability result: periodic perturbations of a flat interface that are initially of size ε remain regular and small up to times of order ε−3. This time scale is expected to be optimal. © 2022 The Authors. Communications on Pure and Applied Mathematics published by Wiley Periodicals LLC.
ISSN:0010-3640
1097-0312
DOI:10.1002/cpa.22041