Ground state solution for a periodic p&q‐Laplacian equation involving critical growth without the Ambrosetti–Rabinowitz condition
We study the ground state solutions for the following p&q‐Laplacian equation −Δpu−Δqu+V(x)(|u|p−2u+|u|q−2u)=λK(x)f(u)+|u|q∗−2u,x∈ℝN,u∈W1,p(ℝN)∩W1,q(ℝN),$$ \left\{\begin{array}{l}-{\Delta}_pu-{\Delta}_qu+V(x)\left({\left|u\right|}&am...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-06, Vol.46 (9), p.10499-10511 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We study the ground state solutions for the following p&q‐Laplacian equation
−Δpu−Δqu+V(x)(|u|p−2u+|u|q−2u)=λK(x)f(u)+|u|q∗−2u,x∈ℝN,u∈W1,p(ℝN)∩W1,q(ℝN),$$ \left\{\begin{array}{l}-{\Delta}_pu-{\Delta}_qu+V(x)\left({\left|u\right|}^{p-2}u+{\left|u\right|}^{q-2}u\right)=\lambda K(x)f(u)+{\left|u\right|}^{q^{\ast }-2}u,x\in {\mathbb{R}}^N,\\ {}u\in {W}^{1,p}\left({\mathbb{R}}^N\right)\cap {W}^{1,q}\left({\mathbb{R}}^N\right),\end{array}\right. $$
where
λ>0$$ \lambda >0 $$ is a parameter large enough,
Δru=div(|∇u|r−2∇u)$$ {\Delta}_ru=\operatorname{div}\left({\left|\nabla u\right|}^{r-2}\nabla u\right) $$ with
r∈{p,q}$$ r\in \left\{p,q\right\} $$ denotes the
r$$ r $$‐Laplacian operator,
1 |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9135 |