Evaluation of different planning methods of 3DCRT, IMRT, and RapidArc for localized prostate cancer patients: planning and dosimetric study
Background Different planning methods of IMRT planning techniques (IMRT (DMLC) and RapidArc) vs. stander techniques (three-dimensional radiation therapy (3DCRT)) will be evaluated for prostate cancer patients’ planning and verification. Three groups of localized prostate cancer patients are planned...
Gespeichert in:
Veröffentlicht in: | Egyptian Journal of Radiology and Nuclear Medicine 2019-09, Vol.50 (1), p.23-8, Article 23 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Background
Different planning methods of IMRT planning techniques (IMRT (DMLC) and RapidArc) vs. stander techniques (three-dimensional radiation therapy (3DCRT)) will be evaluated for prostate cancer patients’ planning and verification. Three groups of localized prostate cancer patients are planned and evaluated regarding DVHs and practical radiation dosimetry, and ten 3DCRT plans are assessed statistically for each patient.
Results
Plan (7) with parameters of five equally weighted fields with angles of 0°, 45°, 90°, 270°, and 315° and energy of 15MV is the most suitable plan both for PTV coverage and for OAR sparing with a fewer number of fields and fewer number of gantry angles. IMRT complexity involves the requirement of long treatment times and additional effort for planning, safety checks, and quality control before the patient start the treatment and proceed.
Conclusions
The selected plan also is more safe on patients up to 7400 cGy than other plans and is easier to be applied compared to IMRT and RapidArc plans, depending on patient geometry. IMRT radiation doses are more effective and can safely be delivered to PTV with little side effects compared with 3D conformal and conventional techniques. RapidArc has the advantage of re-optimizing and small arcs of variable parameters in dose delivery, taking into account the maximum speed of gantry and MLCs. |
---|---|
ISSN: | 2090-4762 0378-603X 2090-4762 |
DOI: | 10.1186/s43055-019-0021-z |