Hopf instability of a Rayleigh–Taylor unstable thin film heated from the gas side

A thin liquid film located on the underside of a horizontal solid substrate can be stabilized by the Marangoni effect if the liquid is heated at its free surface. Applying long-wave approximation and projecting the velocity and temperature fields onto a basis of low-order polynomials, we derive a di...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The European physical journal. ST, Special topics Special topics, 2023-04, Vol.232 (4), p.367-374
Hauptverfasser: Bestehorn, Michael, Oron, Alexander
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A thin liquid film located on the underside of a horizontal solid substrate can be stabilized by the Marangoni effect if the liquid is heated at its free surface. Applying long-wave approximation and projecting the velocity and temperature fields onto a basis of low-order polynomials, we derive a dimension-reduced set of three coupled evolution equations where nonlinearities of both the Navier–Stokes and the heat equation are included. We find that in a certain range of fluid parameters and layer depth, the first bifurcation from the motionless state is oscillatory which sets in with a finite but small wave number. The oscillatory branch is determined using a linear stability analysis of the long-wave model, but also by solving the linearized original hydrodynamic equations. Finally, numerical solutions of the reduced nonlinear model equations in three spatial dimensions are presented.
ISSN:1951-6355
1951-6401
DOI:10.1140/epjs/s11734-023-00782-z