Remarks on the balanced metric on Hartogs triangles with integral exponent

In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ + , i.e. equipped with a natural Kähler form with where μ = ( μ 1 , …, μ n ), μ i > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weigh...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Czechoslovak Mathematical Journal 2023, Vol.73 (2), p.633-647
Hauptverfasser: Zhang, Qiannan, Yang, Huan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ + , i.e. equipped with a natural Kähler form with where μ = ( μ 1 , …, μ n ), μ i > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for (Ω n (γ), g ( μ )) and we prove that g ( μ ) is balanced if and only if μ 1 > 1 and γμ 1 is an integer, μ i are integers such that μ i ≽ 2 for all i = 2, …, n − 1, and μ n > 1. Second, we prove that g ( μ ) is Kähler-Einstein if and only if μ 1 = μ 2 = … = μ n = 2λ, where λ is a nonzero constant. Finally, we show that if g ( μ ) is balanced then (Ω n (γ), g ( μ )) admits a Berezin-Engliš quantization.
ISSN:0011-4642
1572-9141
DOI:10.21136/CMJ.2023.0208-22