Remarks on the balanced metric on Hartogs triangles with integral exponent
In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ + , i.e. equipped with a natural Kähler form with where μ = ( μ 1 , …, μ n ), μ i > 0, depending on n parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weigh...
Gespeichert in:
Veröffentlicht in: | Czechoslovak Mathematical Journal 2023, Vol.73 (2), p.633-647 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | In this paper we study the balanced metrics on some Hartogs triangles of exponent γ ∈ ℤ
+
, i.e. equipped with a natural Kähler form with where
μ
= (
μ
1
, …,
μ
n
),
μ
i
> 0, depending on
n
parameters. The purpose of this paper is threefold. First, we compute the explicit expression for the weighted Bergman kernel function for (Ω
n
(γ),
g
(
μ
)) and we prove that
g
(
μ
) is balanced if and only if
μ
1
> 1 and
γμ
1
is an integer,
μ
i
are integers such that
μ
i
≽ 2 for all
i
= 2, …,
n
− 1, and
μ
n
> 1. Second, we prove that
g
(
μ
) is Kähler-Einstein if and only if
μ
1
=
μ
2
= … =
μ
n
= 2λ, where λ is a nonzero constant. Finally, we show that if
g
(
μ
) is balanced then (Ω
n
(γ),
g
(
μ
)) admits a Berezin-Engliš quantization. |
---|---|
ISSN: | 0011-4642 1572-9141 |
DOI: | 10.21136/CMJ.2023.0208-22 |