Loewner’s theorem for maps on operator domains

The classical Loewner’s theorem states that operator monotone functions on real intervals are described by holomorphic functions on the upper half-plane. We characterize local order isomorphisms on operator domains by biholomorphic automorphisms of the generalized upper half-plane, which is the coll...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Canadian journal of mathematics 2023-06, Vol.75 (3), p.912-944
Hauptverfasser: Mori, Michiya, Šemrl, Peter
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:The classical Loewner’s theorem states that operator monotone functions on real intervals are described by holomorphic functions on the upper half-plane. We characterize local order isomorphisms on operator domains by biholomorphic automorphisms of the generalized upper half-plane, which is the collection of all operators with positive invertible imaginary part. We describe such maps in an explicit manner, and examine properties of maximal local order isomorphisms. Moreover, in the finite-dimensional case, we prove that every order embedding of a matrix domain is a homeomorphic order isomorphism onto another matrix domain.
ISSN:0008-414X
1496-4279
DOI:10.4153/S0008414X22000219