Introduction of pseudo-stress for local residual and algebraic derivation of consistent tangent in elastoplasticity

In this article, an introduction of pseudo-stress for local residual and an algebraic derivation of consistent tangent are presented. The authors define a coupled problem of the equilibrium equation for the overall structure and the constrained equations for stress state at every material point, and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational mechanics 2023-06, Vol.71 (6), p.1081-1091
Hauptverfasser: Yamamoto, Takeki, Yamada, Takahiro, Matsui, Kazumi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this article, an introduction of pseudo-stress for local residual and an algebraic derivation of consistent tangent are presented. The authors define a coupled problem of the equilibrium equation for the overall structure and the constrained equations for stress state at every material point, and the pseudo-stress and the derived consistent tangent can be implemented easily to finite element analysis. In the proposed block Newton method, the internal variables are also updated algebraically without any local iterative calculations. In addition, the authors demonstrate the performance of the proposed approach for both J 2 plasticity and J 2 plasticity under plane stress state.
ISSN:0178-7675
1432-0924
DOI:10.1007/s00466-023-02268-0