GRB 221009A: Spectral signatures based on ALPs candidates

GRB 221009A has posed a significant challenge to our current understanding of the mechanisms that produce TeV photons in gamma-ray bursts (GRB). On one hand, the Klein-Nishina (KN) effect of the inverse Compton scattering leads to less efficient energy losses of high-energy electrons. In the other h...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:arXiv.org 2023-05
Hauptverfasser: D Avila Rojas, Hernández-Cadena, S, González, M M, Pratts, A, Alfaro, R, Serna-Franco, J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:GRB 221009A has posed a significant challenge to our current understanding of the mechanisms that produce TeV photons in gamma-ray bursts (GRB). On one hand, the Klein-Nishina (KN) effect of the inverse Compton scattering leads to less efficient energy losses of high-energy electrons. In the other hand, at a redshift of 0.151, the TeV spectrum of GRB 221009A undergoes significant absorption by the Extragalactic Background Light (EBL). Therefore, the observation of 18-TeV and 250-TeV photons in this event implies the presence of enormous photon fluxes at the source, which cannot be easily generated by the Synchrotron Self-Compton mechanism in external shocks. As an alternative, some authors have suggested the possibility of converting the TeV-photons into Axion-like particles (ALPs) at the host galaxy, in order to avoid the effects of EBL absorption, and then reconverting them into photons within the Milky Way. While this solution relaxes the requirement of very-high photon fluxes, the KN effect still poses a challenge. Previously, we have showed that the injections of ALPs could explain the observation of 18-TeV photons. Here, we include the energy dependence of the survival probability to determine the spectral conditions that would be required for the injection of such ALPs, limit the ALP's candidate region, and discuss the implications in the maximum particle rate for different light-curve assumptions.
ISSN:2331-8422