JORDAN–KRONECKER INVARIANTS OF LIE ALGEBRA REPRESENTATIONS AND DEGREES OF INVARIANT POLYNOMIALS
For an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ . Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ . Furthermore, we p...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2023-06, Vol.28 (2), p.541-560 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | For an arbitrary representation
ρ
of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the
Jordan–Kronecker invariants
of
ρ
. Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of
ρ
. Furthermore, we prove that these lower bounds are exact if and only if the invariants are independent outside of a set of large codimension. Finally, we show that under certain additional assumptions our bounds are exact if and only if the algebra of invariants is freely generated. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-021-09661-0 |