JORDAN–KRONECKER INVARIANTS OF LIE ALGEBRA REPRESENTATIONS AND DEGREES OF INVARIANT POLYNOMIALS

For an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ . Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ . Furthermore, we p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2023-06, Vol.28 (2), p.541-560
Hauptverfasser: BOLSINOV, A., IZOSIMOV, A., KOZLOV, I.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:For an arbitrary representation ρ of a complex finite-dimensional Lie algebra, we construct a collection of numbers that we call the Jordan–Kronecker invariants of ρ . Among other interesting properties, these numbers provide lower bounds for degrees of polynomial invariants of ρ . Furthermore, we prove that these lower bounds are exact if and only if the invariants are independent outside of a set of large codimension. Finally, we show that under certain additional assumptions our bounds are exact if and only if the algebra of invariants is freely generated.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-021-09661-0