Symplectic Coordinates on the Deformation Spaces of Convex Projective Structures on 2-Orbifolds
Let O be a closed orientable 2-orbifold of negative Euler characteristic. Huebschmann constructed the Atiyah-Bott-Goldman type symplectic form ω on the deformation space C (O) of convex projective structures on O. We show that the deformation space C (O) of convex projective structures on O admits a...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2023-06, Vol.28 (2), p.639-693 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let O be a closed orientable 2-orbifold of negative Euler characteristic. Huebschmann constructed the Atiyah-Bott-Goldman type symplectic form
ω
on the deformation space
C
(O) of convex projective structures on O. We show that the deformation space
C
(O) of convex projective structures on O admits a global Darboux coordinate system with respect to
ω
. To this end, we show that
C
(O) can be decomposed into smaller symplectic spaces. In the course of the proof, we also study the deformation space
C
(O) for an orbifold O with boundary and construct the symplectic form on the deformation space of convex projective structures on O with fixed boundary holonomy. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-022-09789-7 |