Symplectic Coordinates on the Deformation Spaces of Convex Projective Structures on 2-Orbifolds

Let O be a closed orientable 2-orbifold of negative Euler characteristic. Huebschmann constructed the Atiyah-Bott-Goldman type symplectic form ω on the deformation space C (O) of convex projective structures on O. We show that the deformation space C (O) of convex projective structures on O admits a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2023-06, Vol.28 (2), p.639-693
Hauptverfasser: CHOI, SUHYOUNG, JUNG, HONGTAEK
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let O be a closed orientable 2-orbifold of negative Euler characteristic. Huebschmann constructed the Atiyah-Bott-Goldman type symplectic form ω on the deformation space C (O) of convex projective structures on O. We show that the deformation space C (O) of convex projective structures on O admits a global Darboux coordinate system with respect to ω . To this end, we show that C (O) can be decomposed into smaller symplectic spaces. In the course of the proof, we also study the deformation space C (O) for an orbifold O with boundary and construct the symplectic form on the deformation space of convex projective structures on O with fixed boundary holonomy.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-022-09789-7