MULTIPLICITY ONE FOR THE PAIR (GLn(D);GLn(E))
Let F be a local field of characteristic zero. Let D be a quaternion algebra over F . Let E be a quadratic field extension of F . Let μ be a character of E × . We study the distinction problem for the pair (GL n ( D );GL n ( E )) and we prove that any bi-(GL n ( E ); μ )-equivariant tempered general...
Gespeichert in:
Veröffentlicht in: | Transformation groups 2023-06, Vol.28 (2), p.853-866 |
---|---|
1. Verfasser: | |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Let
F
be a local field of characteristic zero. Let
D
be a quaternion algebra over
F
. Let
E
be a quadratic field extension of
F
. Let
μ
be a character of
E
×
. We study the distinction problem for the pair (GL
n
(
D
);GL
n
(
E
)) and we prove that any bi-(GL
n
(
E
);
μ
)-equivariant tempered generalized function on GL
n
(
D
) is invariant with respect to an anti-involution. Then it implies that dimHom
GL
n
(
E
)
(π;
μ
) ≤ 1 by the generalized Gelfand-Kazhdan criterion. Thus we give a new proof to the fact that (GL
2
n
(
F
);GL
n
(
E
)) is a Gelfand pair when
μ
is trivial and
D
splits. |
---|---|
ISSN: | 1083-4362 1531-586X |
DOI: | 10.1007/s00031-022-09713-z |