MULTIPLICITY ONE FOR THE PAIR (GLn(D);GLn(E))

Let F be a local field of characteristic zero. Let D be a quaternion algebra over F . Let E be a quadratic field extension of F . Let μ be a character of E × . We study the distinction problem for the pair (GL n ( D );GL n ( E )) and we prove that any bi-(GL n ( E ); μ )-equivariant tempered general...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Transformation groups 2023-06, Vol.28 (2), p.853-866
1. Verfasser: LU, HENGFEI
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let F be a local field of characteristic zero. Let D be a quaternion algebra over F . Let E be a quadratic field extension of F . Let μ be a character of E × . We study the distinction problem for the pair (GL n ( D );GL n ( E )) and we prove that any bi-(GL n ( E ); μ )-equivariant tempered generalized function on GL n ( D ) is invariant with respect to an anti-involution. Then it implies that dimHom GL n ( E ) (π; μ ) ≤ 1 by the generalized Gelfand-Kazhdan criterion. Thus we give a new proof to the fact that (GL 2 n ( F );GL n ( E )) is a Gelfand pair when μ is trivial and D splits.
ISSN:1083-4362
1531-586X
DOI:10.1007/s00031-022-09713-z