On the Contractibility of Random Vietoris–Rips Complexes
We show that the Vietoris–Rips complex R ( n , r ) built over n points sampled at random from a uniformly positive probability measure on a convex body K ⊆ R d is a.a.s. contractible when r ≥ c ( ln n / n ) 1 / d for a certain constant that depends on K and the probability measure used. This answers...
Gespeichert in:
Veröffentlicht in: | Discrete & computational geometry 2023-06, Vol.69 (4), p.1139-1156 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | We show that the Vietoris–Rips complex
R
(
n
,
r
)
built over
n
points sampled at random from a uniformly positive probability measure on a convex body
K
⊆
R
d
is a.a.s. contractible when
r
≥
c
(
ln
n
/
n
)
1
/
d
for a certain constant that depends on
K
and the probability measure used. This answers a question of Kahle (Discrete Comput. Geom.
45
(3), 553–573 (2011)). We also extend the proof to show that if
K
is a compact, smooth
d
-manifold with boundary—but not necessarily convex—then
R
(
n
,
r
)
is a.a.s. homotopy equivalent to
K
when
c
1
(
ln
n
/
n
)
1
/
d
≤
r
≤
c
2
for constants
c
1
=
c
1
(
K
)
,
c
2
=
c
2
(
K
)
. Our proofs expose a connection with the game of cops and robbers. |
---|---|
ISSN: | 0179-5376 1432-0444 |
DOI: | 10.1007/s00454-022-00378-9 |