REMARKS ON HILBERT’S TENTH PROBLEM AND THE IWASAWA THEORY OF ELLIPTIC CURVES

Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let $K_{\operatorname {cyc}}$ be the cyclotomic $\mathbb {Z}_p$ -extension of K and $K_n$ its nth layer. The Mordell–Weil rank of E is said to be constant in the cyclotomic tower of K if for all n,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bulletin of the Australian Mathematical Society 2023-06, Vol.107 (3), p.440-450
1. Verfasser: RAY, ANWESH
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Let E be an elliptic curve with positive rank over a number field K and let p be an odd prime number. Let $K_{\operatorname {cyc}}$ be the cyclotomic $\mathbb {Z}_p$ -extension of K and $K_n$ its nth layer. The Mordell–Weil rank of E is said to be constant in the cyclotomic tower of K if for all n, the rank of $E(K_n)$ is equal to the rank of $E(K)$ . We apply techniques in Iwasawa theory to obtain explicit conditions for the rank of an elliptic curve to be constant in this sense. We then indicate the potential applications to Hilbert’s tenth problem for number rings.
ISSN:0004-9727
1755-1633
DOI:10.1017/S000497272200082X