The Cauchy problem for the nonisentropic compressible MHD fluids: Optimal time‐decay rates

This paper is concerned with the time‐decay rates of the strong solutions of the three‐dimensional nonisentropic compressible magnetohydrodynamic (MHD) system. First, motivated by Pu and Guo's result [Z. Angew. Math. Phys. 64 (2013) 519–538], we establish the existence result of a unique local‐...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematical methods in the applied sciences 2023-05, Vol.46 (8), p.9708-9735
Hauptverfasser: Huang, Wenting, Fu, Shengbin
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This paper is concerned with the time‐decay rates of the strong solutions of the three‐dimensional nonisentropic compressible magnetohydrodynamic (MHD) system. First, motivated by Pu and Guo's result [Z. Angew. Math. Phys. 64 (2013) 519–538], we establish the existence result of a unique local‐in‐time strong solution for the MHD system. Then, we derive a priori estimates and use the continuity argument to obtain the global‐in‐time solution, where the initial perturbation is small in H2$$ {H}^2 $$‐norm. Finally, based on Fourier theory and the idea of cancelation of a low‐medium frequent part as in [Sci. China Math. 65 (2022) 1199–1228], we get the optimal time‐decay rates (including highest‐order derivatives) of strong solutions for nonisentropic MHD fluids when the boundedness of L1$$ {L}^1 $$‐norm of the initial perturbation is required. Our result is the first one concerning with the optimal decay estimates of the highest‐order derivatives of the nonisentropic MHD system.
ISSN:0170-4214
1099-1476
DOI:10.1002/mma.9082