The Cauchy problem for the nonisentropic compressible MHD fluids: Optimal time‐decay rates
This paper is concerned with the time‐decay rates of the strong solutions of the three‐dimensional nonisentropic compressible magnetohydrodynamic (MHD) system. First, motivated by Pu and Guo's result [Z. Angew. Math. Phys. 64 (2013) 519–538], we establish the existence result of a unique local‐...
Gespeichert in:
Veröffentlicht in: | Mathematical methods in the applied sciences 2023-05, Vol.46 (8), p.9708-9735 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | This paper is concerned with the time‐decay rates of the strong solutions of the three‐dimensional nonisentropic compressible magnetohydrodynamic (MHD) system. First, motivated by Pu and Guo's result [Z. Angew. Math. Phys. 64 (2013) 519–538], we establish the existence result of a unique local‐in‐time strong solution for the MHD system. Then, we derive a priori estimates and use the continuity argument to obtain the global‐in‐time solution, where the initial perturbation is small in
H2$$ {H}^2 $$‐norm. Finally, based on Fourier theory and the idea of cancelation of a low‐medium frequent part as in [Sci. China Math. 65 (2022) 1199–1228], we get the optimal time‐decay rates (including highest‐order derivatives) of strong solutions for nonisentropic MHD fluids when the boundedness of
L1$$ {L}^1 $$‐norm of the initial perturbation is required. Our result is the first one concerning with the optimal decay estimates of the highest‐order derivatives of the nonisentropic MHD system. |
---|---|
ISSN: | 0170-4214 1099-1476 |
DOI: | 10.1002/mma.9082 |