A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO2 hydrogenation to methanol
We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datas...
Gespeichert in:
Veröffentlicht in: | Catalysis science & technology 2023-05, Vol.13 (9), p.2656-2661 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!