A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO2 hydrogenation to methanol

We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2023-05, Vol.13 (9), p.2656-2661
Hauptverfasser: Khatamirad, Mohammad, Fako, Edvin, Boscagli, Chiara, Müller, Matthias, Ebert, Fabian, Raoul Naumann d'Alnoncourt, Schaefer, Ansgar, Schunk, Stephan Andreas, Jevtovikj, Ivana, Rosowski, Frank, De, Sandip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!