A data-driven high-throughput workflow applied to promoted In-oxide catalysts for CO2 hydrogenation to methanol

We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Catalysis science & technology 2023-05, Vol.13 (9), p.2656-2661
Hauptverfasser: Khatamirad, Mohammad, Fako, Edvin, Boscagli, Chiara, Müller, Matthias, Ebert, Fabian, Raoul Naumann d'Alnoncourt, Schaefer, Ansgar, Schunk, Stephan Andreas, Jevtovikj, Ivana, Rosowski, Frank, De, Sandip
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We propose a novel high-throughput workflow, combining DFT-derived atomic scale interaction parameters with experimental data to identify key performance-related descriptors in a CO2 to methanol reaction, for In-based catalysts. Utilizing advanced machine learning algorithms suitable for small datasets, secondary descriptors with high predictive power for catalytic activity were constructed. These descriptors, which highlight the crucial role of hydroxyl sites, can be applied to designing new materials and to bringing them to the test with high-throughput screening, paving the path for accelerated catalyst design.
ISSN:2044-4753
2044-4761
DOI:10.1039/d3cy00148b