Machine Learning Architectures for Price Formation Models

Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-08, Vol.88 (1), p.23, Article 23
Hauptverfasser: Gomes, Diogo, Gutierrez, Julian, Laurière, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 1
container_start_page 23
container_title Applied mathematics & optimization
container_volume 88
creator Gomes, Diogo
Gutierrez, Julian
Laurière, Mathieu
description Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.
doi_str_mv 10.1007/s00245-023-10002-8
format Article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_journals_2811066545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2811066545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c319t-b549288573ad9950c8f2166c60b34f41e192f681798cc33a6dacc48796e3c17f3</originalsourceid><addsrcrecordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk7ybHUqwVtuhBzyFNk7ql3dRk9-C3N3UFb56GGX7vDe8hdEvgngDUDxmAcoGBMlx2oFidoQnhjGKQIM_RBEALzCWRl-gq592JYZJNkF5Z99F2vmq8TV3bbatZKofeu35IPlchpuo1tc5Xi5gOtm9jV63ixu_zNboIdp_9ze-covfF49t8iZuXp-f5rMGOEd3jteCaKiVqZjdaC3AqUCKlk7BmPHDiiaZBKlJr5RxjVm6sc1zVWnrmSB3YFN2NvscUPwefe7OLQ-rKS0MVISCl4KJQdKRcijknH8wxtQebvgwBc6rIjBWZktv8VGRUEbFRlAvcbX36s_5H9Q1YXWc3</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2811066545</pqid></control><display><type>article</type><title>Machine Learning Architectures for Price Formation Models</title><source>SpringerLink (Online service)</source><source>EBSCOhost Business Source Complete</source><creator>Gomes, Diogo ; Gutierrez, Julian ; Laurière, Mathieu</creator><creatorcontrib>Gomes, Diogo ; Gutierrez, Julian ; Laurière, Mathieu</creatorcontrib><description>Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.</description><identifier>ISSN: 0095-4616</identifier><identifier>EISSN: 1432-0606</identifier><identifier>DOI: 10.1007/s00245-023-10002-8</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Applied mathematics ; Calculus of Variations and Optimal Control; Optimization ; Control ; Control theory ; Estimates ; Lagrange multiplier ; Machine learning ; Mathematical and Computational Physics ; Mathematical Methods in Physics ; Mathematics ; Mathematics and Statistics ; Numerical and Computational Physics ; Optimal control ; Optimization ; Simulation ; Systems Theory ; Theoretical ; Training</subject><ispartof>Applied mathematics &amp; optimization, 2023-08, Vol.88 (1), p.23, Article 23</ispartof><rights>The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2023. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c319t-b549288573ad9950c8f2166c60b34f41e192f681798cc33a6dacc48796e3c17f3</citedby><cites>FETCH-LOGICAL-c319t-b549288573ad9950c8f2166c60b34f41e192f681798cc33a6dacc48796e3c17f3</cites><orcidid>0000-0002-3077-4002</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00245-023-10002-8$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00245-023-10002-8$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,41488,42557,51319</link.rule.ids></links><search><creatorcontrib>Gomes, Diogo</creatorcontrib><creatorcontrib>Gutierrez, Julian</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><title>Machine Learning Architectures for Price Formation Models</title><title>Applied mathematics &amp; optimization</title><addtitle>Appl Math Optim</addtitle><description>Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.</description><subject>Applied mathematics</subject><subject>Calculus of Variations and Optimal Control; Optimization</subject><subject>Control</subject><subject>Control theory</subject><subject>Estimates</subject><subject>Lagrange multiplier</subject><subject>Machine learning</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical Methods in Physics</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical and Computational Physics</subject><subject>Optimal control</subject><subject>Optimization</subject><subject>Simulation</subject><subject>Systems Theory</subject><subject>Theoretical</subject><subject>Training</subject><issn>0095-4616</issn><issn>1432-0606</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp9kE9LAzEQxYMoWKtfwNOC5-jk7ybHUqwVtuhBzyFNk7ql3dRk9-C3N3UFb56GGX7vDe8hdEvgngDUDxmAcoGBMlx2oFidoQnhjGKQIM_RBEALzCWRl-gq592JYZJNkF5Z99F2vmq8TV3bbatZKofeu35IPlchpuo1tc5Xi5gOtm9jV63ixu_zNboIdp_9ze-covfF49t8iZuXp-f5rMGOEd3jteCaKiVqZjdaC3AqUCKlk7BmPHDiiaZBKlJr5RxjVm6sc1zVWnrmSB3YFN2NvscUPwefe7OLQ-rKS0MVISCl4KJQdKRcijknH8wxtQebvgwBc6rIjBWZktv8VGRUEbFRlAvcbX36s_5H9Q1YXWc3</recordid><startdate>20230801</startdate><enddate>20230801</enddate><creator>Gomes, Diogo</creator><creator>Gutierrez, Julian</creator><creator>Laurière, Mathieu</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AO</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L6V</scope><scope>M0C</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><orcidid>https://orcid.org/0000-0002-3077-4002</orcidid></search><sort><creationdate>20230801</creationdate><title>Machine Learning Architectures for Price Formation Models</title><author>Gomes, Diogo ; Gutierrez, Julian ; Laurière, Mathieu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c319t-b549288573ad9950c8f2166c60b34f41e192f681798cc33a6dacc48796e3c17f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Applied mathematics</topic><topic>Calculus of Variations and Optimal Control; Optimization</topic><topic>Control</topic><topic>Control theory</topic><topic>Estimates</topic><topic>Lagrange multiplier</topic><topic>Machine learning</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical Methods in Physics</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical and Computational Physics</topic><topic>Optimal control</topic><topic>Optimization</topic><topic>Simulation</topic><topic>Systems Theory</topic><topic>Theoretical</topic><topic>Training</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Gomes, Diogo</creatorcontrib><creatorcontrib>Gutierrez, Julian</creatorcontrib><creatorcontrib>Laurière, Mathieu</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>ABI/INFORM Global</collection><collection>Research Library</collection><collection>ProQuest Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><jtitle>Applied mathematics &amp; optimization</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Gomes, Diogo</au><au>Gutierrez, Julian</au><au>Laurière, Mathieu</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Machine Learning Architectures for Price Formation Models</atitle><jtitle>Applied mathematics &amp; optimization</jtitle><stitle>Appl Math Optim</stitle><date>2023-08-01</date><risdate>2023</risdate><volume>88</volume><issue>1</issue><spage>23</spage><pages>23-</pages><artnum>23</artnum><issn>0095-4616</issn><eissn>1432-0606</eissn><abstract>Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.</abstract><cop>New York</cop><pub>Springer US</pub><doi>10.1007/s00245-023-10002-8</doi><orcidid>https://orcid.org/0000-0002-3077-4002</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0095-4616
ispartof Applied mathematics & optimization, 2023-08, Vol.88 (1), p.23, Article 23
issn 0095-4616
1432-0606
language eng
recordid cdi_proquest_journals_2811066545
source SpringerLink (Online service); EBSCOhost Business Source Complete
subjects Applied mathematics
Calculus of Variations and Optimal Control
Optimization
Control
Control theory
Estimates
Lagrange multiplier
Machine learning
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematics
Mathematics and Statistics
Numerical and Computational Physics
Optimal control
Optimization
Simulation
Systems Theory
Theoretical
Training
title Machine Learning Architectures for Price Formation Models
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T15%3A41%3A02IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Machine%20Learning%20Architectures%20for%20Price%20Formation%20Models&rft.jtitle=Applied%20mathematics%20&%20optimization&rft.au=Gomes,%20Diogo&rft.date=2023-08-01&rft.volume=88&rft.issue=1&rft.spage=23&rft.pages=23-&rft.artnum=23&rft.issn=0095-4616&rft.eissn=1432-0606&rft_id=info:doi/10.1007/s00245-023-10002-8&rft_dat=%3Cproquest_cross%3E2811066545%3C/proquest_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2811066545&rft_id=info:pmid/&rfr_iscdi=true