Machine Learning Architectures for Price Formation Models

Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development o...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied mathematics & optimization 2023-08, Vol.88 (1), p.23, Article 23
Hauptverfasser: Gomes, Diogo, Gutierrez, Julian, Laurière, Mathieu
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models.
ISSN:0095-4616
1432-0606
DOI:10.1007/s00245-023-10002-8