Machine Learning Architectures for Price Formation Models
Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development o...
Gespeichert in:
Veröffentlicht in: | Applied mathematics & optimization 2023-08, Vol.88 (1), p.23, Article 23 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Here, we study machine learning (ML) architectures to solve a mean-field games (MFGs) system arising in price formation models. We formulate a training process that relies on a min–max characterization of the optimal control and price variables. Our main theoretical contribution is the development of a posteriori estimates as a tool to evaluate the convergence of the training process. We illustrate our results with numerical experiments for linear dynamics and both quadratic and non-quadratic models. |
---|---|
ISSN: | 0095-4616 1432-0606 |
DOI: | 10.1007/s00245-023-10002-8 |