Influence of monsoon anomalies on intra-annual density fluctuations of Chinese pine in the Loess Plateau

In the past few decades, the East Asian summer monsoon (EASM) has experienced an unprecedented weakening, exacerbating drought in northern China, especially in the monsoon margin area. Improving our understanding of monsoon variability will benefit agricultural production, ecological construction, a...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:International journal of biometeorology 2023-05, Vol.67 (5), p.847-856
Hauptverfasser: Wang, Shuangjuan, Deng, Yang, Gao, Linlin, Zhang, Yuhang, Shi, Xingying, Gou, Xiaohua
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In the past few decades, the East Asian summer monsoon (EASM) has experienced an unprecedented weakening, exacerbating drought in northern China, especially in the monsoon margin area. Improving our understanding of monsoon variability will benefit agricultural production, ecological construction, and disaster management. Tree-ring is widely used as proxy data for extending the monsoon history. However, in the East Asian monsoon margin, the tree-ring width were mostly formed before the rainy season, thus may have limited ability to indicate the monsoon variability. Intra-annual density fluctuations (IADFs) can provide higher resolution information on tree growth as well as evidence of short-term climate events. Here, we used Chinese pine ( Pinus tabuliformis Carr.) samples from the eastern edge of the Chinese Loess Plateau (CLP), where the climate is deeply affected by monsoon, to investigate the response of tree growth and IADFs frequency to climate variation. We show that tree-ring width and IADFs record significantly different climatic signals. The former was mainly affected by moisture conditions at the end of the previous growing season and the current spring. While the latter was common in years when severe droughts occurred in June and July, especially in June. This period coincides with the onset of the EASM, so we further analyzed the relationship between IADFs frequency and the rainy season. Both correlation analysis and the GAM model suggest that the frequent occurrence of IADFs may be related to the late start of the monsoon rainy season, meaning that we have found a new indicator in tree-ring records that can capture monsoon anomalies. Our results provide further insight into drought variation in the eastern CLP, which also implicates the Asian summer monsoon dynamic.
ISSN:0020-7128
1432-1254
DOI:10.1007/s00484-023-02459-7